
Smartbuf: An Agile Memory Management
for Shared-Memory Switches in Datacenters

Hamed Rezaei*, Hamidreza Almasi*, and Balajee Vamanan
Department of Computer Science, University of Illinois at Chicago, USA

Email: {hrezae2, halmas3, bvamanan}@uic.edu

Abstract—Important datacenter applications generate ex-
tremely bursty traffic patterns and demand low latency tails as
well as high throughput. Datacenter networks employ shallow-
buffered, shared-memory switches to cut cost and to cope up
with ever-increasing link speeds. End-to-end congestion control
cannot react in time to handle bursty, short flows that dominate
datacenter traffic and they incur buffer overflows, which cause
long latency tails and degrade throughput. Therefore, there is
a need for agile, switch-local mechanisms that quickly sense
congestion and provision enough buffer space dynamically to
avoid costly buffer overflows. We propose Smartbuf, an online
learning algorithm that accurately predicts buffer requirement
of each switch port before the onset of congestion. Our key novelty
lies in fingerprinting bursts based on the gradient of queue length
and using this information to provision just enough buffer space.
Our preliminary evaluations show that our algorithm can predict
buffer demands accurately within an average error margin of 6%
and achieve an improvement in the 99th percentile latency by a
factor of 8x at high loads, while providing good fairness among
ports.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

As we migrate data to datacenters and cloud, we increas-
ingly rely on online services (e.g., Web Search) to retrieve
data in a timely fashion—the services run in datacenters and
often lie in the critical path of interactive, end-user experi-
ence. Owing to their large datasets, online services distribute
data among a large number of servers; such a distributed
architecture also provides good fault tolerance. Their data
distribution and interactive nature have two key implications:
(1) Every user query must fetch data from a large number of
servers and responses to user queries cannot complete without
fetching data from all or most servers. Therefore, the overall
response time depends on the tail (e.g., 99th percentile) flow
completion times [1]. (2) Because the user query naturally
synchronizes responses from several servers (i.e., 10–100s),
the underlying network experiences a highly bursty traffic
pattern called incast [2]. The challenge of achieving a low
tail latency in the presence of incast is well known.

Today’s datacenters use shared-memory switches with shal-
low buffers, which further exacerbates the problem [3]. Be-
cause incast is a synchronized burst of flows destined to
the same output port of a switch, buffers build up and
overflow; the resulting packet drops and the accompanied

*Equal contribution

waiting for TCP timeout adversely affects tail latency. Recent
congestion control algorithms address the incast problem. The
efficacy of congestion control approaches, however, is limited
by feedback latency (i.e., round trip time) and algorithms’
convergence times, which range from a few to several tens
of round trips. While this is not a serious limitation for long
flows, recent measurements from datacenters show that incast
flows are typically short (e.g., < 1 KB [4,5]) and last only a
handful of rounds; further, most incasts last shorter than typical
Round Trip Times (RTT). Packet scheduling approaches [6]
also do not help because the flows that contend for bandwidth
during an incast have identical priority (e.g., size, deadline).

We can avoid the costly TCP timeouts if we can provision
enough buffer space to absorb incasts. In general, the amount
of buffer required per port is proportional to bandwidth-delay
product. The buffer size of Internet routers can be reduced
because of statistical multiplexing among flows that share
the link and the lack of synchronization among flows [7].
However, the preceding observations do not hold true in
datacenters—a much smaller number of flows share a link
and applications produce synchronized flows by design [8].
With network bandwidth scaling faster than memory (Moore’s
law) and delay mostly bounded by the speed of light, large
buffers for today’s extremely fast datacenters is not a practical
design choice [9]. Fortunately, not all ports are likely to expe-
rience synchronized flows (i.e., incasts) at the same time and
their buffer demands change over time. This diversity among
ports provides an opportunity to dynamically allocate memory
to ports. Existing proposals for dynamic memory allocation
identify congested ports and allocate either a portion [10] or
all [11] of the memory equally among congested ports— while
existing proposals detect congested ports, they do not estimate
the extent of congestion experienced by each port. Therefore, if
two or more ports experience congestion (e.g., incast) to vary-
ing degrees, they would allocate an equal amount of memory
to all congested ports and their performance would suffer. We
observe this phenomenon in our experiments (Section IV).

In this paper, we propose Smartbuf , an agile memory
management scheme for efficiently sharing memory among
switch ports by accurately predicting the buffer demands of
ports and to allocate memory proportional to their demands.
As compared to the binary decision of identifying whether
a port is congested or not, estimating buffer demands with

978-0-7381-3207-5/21/$31.00 ©2021 IEEE

high accuracy is challenging. We make three key observations
that enable us to accurately predict buffer demands at switch
ports: (1) Ports require large buffers during incasts and the
fan-in (incast) degree is a stronger predictor of buffer demands
than other factors such as flow sizes and congestion control
algorithms; (2) The gradient of queue length at an output port
of a switch when sufficiently smoothed out (averaged) serves
as a reliable proxy for fan-in/incast degree; (3) The peak buffer
demands of incasts change at relatively longer timescales (e.g.,
seconds–minutes). Our first observation follows from the fact
that most incasts involve small flows (i.e., flow size is not a
key factor) and the flows do not last enough for congestion
control algorithms to make a significant difference. The second
observation follows from the observation that the gradient
of queue length reflects the aggregate incoming rate, which
is largely determined by incast degree (from (1)). The last
observation follows from the fact that workload characteristics
change when workloads are added/removed or the nature of the
workload changes over time (e.g., software upgrades). Thus,
workload characteristics change at relatively longer timescales
and allow dynamic buffer adjustments to be effective. The
preceding observations enable us to reliably predict future
demands based on past allocations (history) and to use local
information (i.e., gradient of queue length) as a key to our
history, which we maintain as a key-value store.

Motivated by these observations, we present an online algo-
rithm (Algorithm 1) for estimating buffer demands based on
the gradient of queue length. Further, because buffer demands
depend only on fan-in and not on ports, ports can learn from
each other. By allocating buffer space proportionally based
on demands, Smartbuf avoids some ports from needlessly
monopolizing buffer space and starving others. This results in
improved fairness as well (Figure 4). Finally, multiple incasts
can collide and create a larger incast, by accident. However,
such occurrences are rare and our algorithm, which is a variant
of K-nearest neighbors, naturally weeds out statistical outliers.

We summarize our contributions as follows:

• Novelty: We show that it is possible to accurately predict
buffer demands of switch ports based only on switch-local
information without requiring application knowledge or
global coordination.

• Preliminary system design: We present our complete
algorithm for buffer allocation that accurately predicts
buffer demands using only a small amount of state.

• Promising results: Our preliminary evaluation on ns-3
shows that Smartbuf accurately predicts buffer demands
within an average error margin of 6% and improves tail
latency by a factor of 8x over existing state-of-the-art
mechanisms at high loads without sacrificing fairness
among ports.

II. BACKGROUND AND MOTIVATION
Bursts in high fan-in scenarios such as incast can cause

packet drops that are only detected by timeouts. Therefore,
achieving the low-latency goal in datacenters translates to

avoiding excessive and persistent packet drops caused by peri-
odic spikes in queue occupancy when buffer-hungry protocols
are used [6]. While switch buffer overflow and congestion are
the most important reasons for packet drops [12,13], they both
are caused by incast of short flows.

There are two main solutions for incast problem: (1) con-
gestion control methods that use a combination of in-network
signals (e.g., ECN notification) and end-host rate control
mechanisms (e.g., adjusting the size of sending window)
to detect and react to congestion. (2) Employing dynamic
memory management schemes at the switches that grow the
share of a specific port without waiting for endhosts’ reaction,
whenever a port becomes overloaded. Below we discuss both
methods in details.

There is a large body of work on congestion control in the
past decade [8,14]. However, these methods are ineffective
when flows are extremely small, which is the case in modern
datacenter networks [4]. A recent study on Facebook’s data-
center reveals that almost 70% of the flows are below 1 KB in
size [4]. While most congestion control methods are able to
solve moderate forms of congestion that last for a few RTTs,
they are ineffective in handling incast of extremely short flows
that mostly finish in less than one RTT.

Therefore, the preferred approach to handle incast of short
flows is to efficiently manage switch buffers. We now de-
scribe the state-of-the-art memory management schemes that
determine how the switch buffer is shared among ports, and
their effect on controlling incast congestion. In the simplest
case called complete partitioning [15], each port is allowed
to use up to a fixed amount of shared buffer space and the
sum of these amounts is equal to the total memory. In the
other extreme, we have complete sharing in which a packet is
accepted at the switch if any space remains in the whole shared
pool of switch memory for it. Intuitively, complete sharing
allows one port to monopolize most of the memory if it is
highly utilized compared to the other ports. When the load
on the ports is balanced, complete partitioning works well.
However, if one or more ports experience severe congestion
and require more space, albeit for a short duration, complete
sharing will provide space and avoids long tails that occur
from the consequent packet drops.

Complete sharing loses its superiority under such traffics
in which both short incast flows and large flows exist at a
switch, as reported in recent studies such as [16]. In this case,
if there is a transient burst among some ports while other
ports are busy with transmitting large flows, there would be
packet drops because complete sharing assigns a large fraction
of the buffer to large flows (i.e., TCP’s slow start doubles the
sending window after each transmission), which leaves little to
no space for short-lived, incast flows. We observed this in our
experiments and we will provide the results of this experiment
later in Section IV.

The dynamic threshold (DT) [10] policy takes a middle
ground between the complete partitioning and complete shar-
ing extremes. In DT, a port is allowed to use a fraction, not
all, of the unused buffer space. If T (t) is the buffer threshold

Fig. 1. Bursts in two different ports within a short time

(i.e., maximum size of the buffer that any one port can use)
at time t, then DT allocated the threshold as follows:

T (t) = α× (B −Q(t)) (1)

In Equation (1), B is the total buffer space, Q(t) is the sum
of all the queue lengths, and α is a configurable parameter
that determines the aggressiveness of DT (i.e., as α = 1
increases, we gradually move from complete partitioning to
complete sharing). DT robustly adapts to changes in the traffic
conditions such as load. A load change causes the system to
go through a transient state. For example, when the load of
one port suddenly increases, its queue will build-up and the
remaining buffer will decrease. This causes a decrease in the
threshold and the set of queues exceeding this new threshold
will stop accepting new packets temporarily until they drain
and provide more buffer space for the newly loaded queue.
DT is fair because it allocates an equal amount of buffer
to the ports that concurrently need some. Variants of DT
are used in today’s switches. For instance, in a shared-buffer
switch like Broadcom Trident with 12 MB of buffer space,
each output port receives a small amount of dedicated space
while the remaining is dynamically allocated and a single
congested port can consume up to 10.5 MB [17]. As more
ports become congested, each port receives a smaller share.
However, DT does not perform well in datacenters. While
microbursts (incasts) of short flows are common and the tail
latency of short flows is supremely important in datacenters,
DT would not increase the buffer share of ports that are
experiencing incast and would fail to absorb microbursts.
Thus, DT does not respond to incasts in a timely fashion and
suffers from packet drops.

The enhanced dynamic threshold (EDT) [11] temporarily
relaxes the fairness constraint and allows a port to temporarily
use most/all of the unused buffer size. However, there is
one major drawback. While EDT predicts whether a port is
experiencing incast, it does not estimate the port’s actual
demand for buffer space. Because EDT does not estimate
buffer demands of ports, when more than one port experiences
incast, EDT cannot proportionally allocate the unused buffer
space. The above limitation is serious if we consider the
nature of datacenter workloads. Specifically, we know that load
is relatively unbalanced and simultaneous bursts drive buffer
usage non-linearly. For example, for data mining and offline
analysis workloads like Hadoop, there are times when all ports
in use are utilized more than 50%. This also holds to a lower

Fig. 2. Maximum buffer allocation
in Smartbuf vs EDT

Fig. 3. 99th percentile flow comple-
tion time

extent for web search and in-memory cache workloads [4].
We simulated the web search workload in a typical datacenter
topology (see Section IV-A for our evaluation methodology)
to check whether multiple ports experience congestion around
the same time and whether such occurrences are common.
Figure 1 shows how the queue lengths of two different ports
evolve over time. We clearly see two incasts occurring closer
in time in different ports. Indeed, we observe this behavior
commonly (we do not show a long time window because such
a plot will not be legible). The preceding observation suggests
that allocating the whole buffer to one port would not only be
unfair but also may not help the tail FCT in typical datacenter
workloads.

We already discussed the inefficiency of static partitioning,
DT, and EDT in lowering tail flow completion times and
predicting the actual buffer demand for each port. But why
Smartbuf would be fair? Smartbuf is fair because it predicts
the buffer demand of each port, and based on that, puts a
cap on the maximum buffer size that each port will receive.
Therefore, no port will usurp the whole buffer and there will
be enough space available for other ports that could become
overloaded at the same time. While Smartbuf provides this
flexibility, EDT assigns the whole buffer to a single port
upon detecting a burst. We designed an experiment to see the
difference between Smartbuf ’s maximum buffer assignment,
versus that of EDT when a burst arrives at a port. Figure 2
shows the result of this experiment. While Smartbuf assigns
less than half of the whole buffer to a single burst in all loads,
EDT dedicates the entire buffer to a burst regardless of load
and activity of other ports. As a result, Smartbuf is always
fair because it leaves considerable amounts of buffer for other
ports. Note that we did not observe any packet drops when
Smartbuf was employed in this experiment. That being said,
the amount of buffer that Smartbuf predicted was very accurate
and there was no need to reserve the whole buffer for a single
port.

III. PROPOSED WORK

A. High-level idea

While it is difficult to predict the arrival time of a burst in
datacenter networks, some ports (e.g., those that are connected
to incast aggregators) are more susceptible to large bursts and
require more buffer space than other ports. Our high-level idea
is to learn the upper bound of buffer occupancy that every burst

could lead to and capping the allocated buffer for each port
that experiences a similar burst at that level.

During high fan-in bursts, data from multiple input ports
get forwarded to the same output port within a switch, which
causes a sharp increase in the output port’s queue length in
a short time. Because most flows that are involved in such a
burst happen to be short flows [4,5], fan-in (incast degree) is
a good predictor of the buffer demand (i.e., other factors like
flow sizes and protocols play a relatively minor role). We see
a clear one-on-one association between fan-in (incast degree)
and buffer demand. This key observation enables us to estimate
buffer demands of ports and allocate space accordingly.

Fan-in, however, is application-level knowledge and there
is no easy way for switches (network layer) to access
this information without substantial changes to the proto-
col stack and applications. Because the gradient of queue
length is proportional to the aggregate incoming rate (i.e.,
average sending rate × fan-in), we make the key insight
that gradient of queue length, which is a local information,
can be effectively used as a proxy for fan-in. Thus, instead of
using fan-in, we use the gradient of queue length to index into
our database of past demands, which is maintained as a key-
value store. To further reduce the sensitivity of our approach
to event-based switch measurements, we propose to use the
smoothed (averaged) gradient of queue lengths as the signature
for the bursts and use it as a key to store and retrieve the buffer
requirements of subsequent bursts. We use EWMA over a short
time window to ensure that we capture the presence of back-
to-back packets in a burst and also filter extreme outliers to
improve accuracy.

The switch starts observing burst signatures and records
the maximum buffer occupancy seen at a port for each key
(gradient of queue length). It continuously learns these key-
value pairs and updates the values whenever a higher upper
bound is encountered. The set of key-value pairs is used to
match on future signatures and to allocate per-port buffers. Due
to the dynamic workloads, the entries eventually age out after
some time (i.e., soft state), and new signatures are learned.
In Section IV, we show that dynamically allocating buffer
space, which is a scarce resource, to ports proportional to
their demand is key to achieving high performance in today’s
datacenter networks and show that existing proposals fall short
of this goal.

B. Smartbuf algorithm for buffer allocation

In this section, we explain the details of Smartbuf ’s buffer
allocation mechanism. As we mentioned in Section I, Smartbuf
focuses on catching bursts’ behaviour and uses this knowledge
to accurately predict the buffer demand of future bursts. Details
of this algorithm are shown in Algorithm 1. This algorithm
consists of two phases: Learning phase and Real phase. In
the Learning phase, the switch records gradient of each port’s
queue length alongside with the maximum queue occupancy
corresponding to this gradient per each packet dequeue. Since
not all the information is useful (i.e., there is no need for
recording non-burst flows’ information), we need two data

Algorithm 1: Smartbuf

1 Input: instantaneous queue length
2 Learning-phase
3 Initializations:
4 max_buf_seen,Gradient,Gradientprev ← 0
5 Temp_map[port, [Gradient,max_buf_seen]] = φ
6 Main_map[Gradient,max_buf_seen] = φ
7 Port_buf_threshold = DT threshold (see [10])
8 for each packet dequeue at port P do
9 Gradient = (Qlen−Qlenprev)/(T − Tprev)

10 Qlenprev ← Qlen, Tprev ← T
11 Gradient← 1/4×Gradient+3/4×Gradientprev
12 Gradientprev ← Gradient
13 if (cur_buf_in_use > max_buf_seen)
14 max_buf_seen = cur_buf_in_use
15 Temp_map[P]← [Gradient,max_buf_seen]
16 else if (cur_buf_in_use < β * max_buf_seen)
17 if (max_buf_seen > (1/σ) ∗ total_buf_size)
18 Main_map← Temp_map[P]
19 else
20 Gradient,max_buf_seen← 0
21 Temp_map[P] ← [Gradient,max_buf_seen]
22 else
23 Continue
24 Real-phase
25 at line 17 of learning phase:
26 if (max_buf_seen > (1/σ) ∗ total_buf_size)
27 for i = 1; i < K; i = i+ 1 do
28 find ith larger than current Gradient key

in Main_map and store it in min(i)
29 avg = (min(1) + ...+min(K))/K
30 Port_buf_threshold = avg
31 Main_map← Temp_map[P]
32 else
33 Port_buf_threshold = DT threshold (see [10])

structures to record the pair of gradient of queue length and
maximum buffer occupancy observed: (1) Temp_map, which
is a hash map of an integer (port ID) and a pair of gradient
of queue length and maximum buffer occupancy (line 5 of
Algorithm 1), and records all the information. (2) Main_map,
which is a hash map as well, and records the burst-related
information only (line 6 of Algorithm 1). Smartbuf kicks in
only if a burst is detected. Thus, when no burst is detected,
each port’s buffer threshold is calculated by DT [10] (line
7 and line 33 in Algorithm 1), which is an efficient buffer
management scheme in absence of incast.

While Temp_map records per port information only,
Main_map is global across all ports so that all ports can use
the learned knowledge of other ports. Therefore, if a port is
experiencing incast, other ports are able to manage similar
bursts efficiently, if the workload changes and they suddenly
become overloaded.

Calculating the gradient of queue length is challenging

because the sign of gradient could change even at the early
stages of an incoming burst. In other words, because not
all packets in a burst arrive at the same time, gradient of
queue length could be negative even inside a burst that more
packets are yet to come. Therefore, Smartbuf calculates the
moving average of gradients while it gives higher weight
(e.g., 0.75) to the previous samples. This is a key step in
Smartbuf ’s algorithm as it has a huge effect on accuracy of
the calculations.

In lines 13–15 of Algorithm 1, we update Temp_map entries
if a larger buffer occupancy is observed. Note that we aim to
match gradient of queue length and maximum buffer occu-
pancy observed (so far), and therefore, this step is important
in recording the correct highest observed buffer occupancy.
If buffer occupancy is being smaller than maximum buffer
occupancy, there is no need to record this value as the switch
already saved the largest buffer occupancy. Lines 16 through
23 focus on inserting Temp_map values into the Main_map
(i.e., moving burst related information to the global hash map).
There are two main conditions before this insertion: (1) if
current buffer occupancy of a port drops below a certain value
(line 16), then it means the saved max_buf_seen is a global
maximum, and, probably, it is time to insert this entry in
Temp_map into the Main_map. This condition (i.e., burst is
finished) is satisfied if the current buffer occupancy is less than
a certain fraction of the previously observed maximum buffer
occupancy (i.e., max_buf_seen). This fraction is determined
by a threshold called β. We need this threshold to accurately
detect the correct finish time of a burst because there are some
large spikes in buffer usage that happen right after a temporary
drop in buffer usage of a port, which we need to catch them
too. We used β = 0.5 in our experiments. Therefore, if
current buffer occupancy of a port drops below half of the
observed maximum buffer occupancy, we may be able to add
this information into Main_map because burst is most likely
gone. Later in Section IV, we discuss the sensitivity of our
algorithm to β.

(2) As we mentioned above, we do not need to insert every
entry of the Temp_map into Main_map unless that entry is cer-
tainly associated with a burst. Line 17 of Algorithm 1 is about
this condition. Similar to line 16, we need a threshold that
indicates the spike in buffer usage that was captured before,
is certainty associated with an incast induced burst. Possible
values for this threshold depend on the definition of burst in
that particular network. As an instance, in a workload that most
servers participate in partition-aggregate traffic (i.e., incast), a
single burst could occupy the whole buffer, depending on the
size of buffer. Therefore, this threshold should be configurable
so that it matches the current workload.

In our experiments, we observed that in many cases that
each port consumed about 20% to 40% of the whole buffer
(i.e., 2.5 < σ < 5), it is experiencing incast that eventually
ends up consuming even more buffer space. Thus, if the
existing max_buf_seen is larger than 20% of the whole buffer
space (i.e., σ = 5 in a 4 MB shared buffer), then we insert the
pair of queue gradient and max_buf_seen into the global hash

map (i.e., Main_map). We will further discuss sensitivity to σ
later in section Section IV.

In the Real phase, all operations in learning phase are
still in progress. However, if line 17 of the algorithm holds,
Smartbuf takes different actions that are shown in lines 27–
31 of algorithm 1. When incast is detected, the switch looks
for K saved gradients in the Main_map that are larger than
current gradient, and are closest to it. The switch calculates the
average of max_buf_seens corresponding to these K gradients
and picks this value as the buffer limit for this port. Therefore,
this port takes a certain fraction of the buffer that is enough
for absorbing a burst, rather than taking the whole buffer
space. Note that Smartbuf keeps inserting the new pair of
gradient and buffer occupancy into the Main_map even in the
real phase (line 31), which improves the buffer assignment
accuracy even when workload is changing. Smartbuf uses the
K-NN approach to increase the accuracy of its buffer allocation
algorithm. Later in section IV, we discuss the range of values
of K that lead to high performance.

There is a possible scenario that two or more ports are
experiencing incasts, and the overall buffer that Smartbuf
assigns to all ports exceeds the total buffer size. If at any
point, a port requires more space but there is no free memory
left to be allocated, we have two options—simply drop the
packet destined to that port or borrow memory from another
port. We resort to the simpler option of dropping in this paper.

IV. EVALUATION

We conduct experiments to evaluate three different aspects
of our approach: (1) performance (Tail latency for short
flows, throughput/fairness for long flows, (2) overhead of our
algorithm, and (3) accuracy and parameter sensitivity of our
buffer-demand estimation.
A. Methodology

We simulate a leaf-spine datacenter topology in which
20 leaf switches are each connected to 20 servers. The
leaf switches are connected upstream to 10 spine switches,
thus creating an over-subscription factor of 2. We implement
Smartbuf in ns-3 [18] and run it on leaf switches while spine
switches are running the traditional dynamic threshold policy.
While ns-3 does not support shared memory switches, we
created models of shared memory switches with a shared
buffer size of 4 MB. We model a web search workload
[8] with short flows in the range of 1 KB to 32 KB and
long flows varying from 1 MB to 10 MB in size. While we
vary the overall network load in our experiments, we set the
long flows to contribute to 80% of the load [6]. We set the
parameters used for port buffer initialization according to [10].
while link speed of leaf switches and spine switches is 10
Gbps across the network, we set the network round trip-time
to 80 microseconds, which is very close to that of modern
datacenters. Also, we use DCTCP [8] as our congestion control
method in which the retransmission timeout is set to 10 ms.
In our experiments, we compare Smartbuf to various poli-
cies including Static partitioning, DT [10], Complete sharing,
EDT [11], and a recent work called FAB [16]. FAB [16]

Fig. 4. Non-burst flows’
buffer share in EDT vs.
Smartbuf

Fig. 5. Sensitivity study
of k values

Fig. 6. Sensitivity to σ
at 80% load

extends DT by using multiple parameters per port (see α from
Equation 1) depending on flow priority (e.g., flow size). While
FAB assigns a larger fraction of buffer to high priority flows,
it does not estimate actual demands and therefore suffers from
similar shortcomings.

B. Performance

First, we compare the 99th percentile flow completion
times (FCT) under different loads for the following schemes:
complete (static) partitioning with an equal per-port share as
the baseline, partitioning with a per-port allocation of size
(RTT × C)/

√
N as in [7], Complete sharing, which allows

queues to grow arbitrarily large until the buffer is full, DT,
EDT, FAB, and Smartbuf . Parameters used in DT, EDT, and
FAB are chosen according to [10], [11], and [16] respectively.
Figure 3 shows their 99th percentile flow completion times
(FCT) vs. load.

As expected, complete partitioning is highly susceptible to
transient bursts which is reflected in its much higher FCT.
The per-port buffer space cap in [7] (i.e., (RTT × C)/

√
N),

derived for the Internet, does not seem enough for datacenters
with highly synchronized short flows that cause incast. Also,
as we see in Figure 3, complete sharing is not able to eliminate
incast induced packet drops because it will be fooled by large
flows. In other words, complete sharing allows large flows to
occupy up to the whole buffer, and therefore, there will be no
space left for short-lived incast flows.

While DT allows for sharing memory between ports, it
always keeps a fraction of the buffer unallocated at any point
and therefore does not absorb incasts; this observation was
also made in other papers [11,16]. In these conditions, the
uncontrolled state in EDT temporarily sets the port threshold
to the whole buffer size, and then in the controlled state
when the burst is gone, it reverts to DT. This helps the tail
FCT because microbursts are expected to last for a short time
only. Recall from Section II, although EDT accurately detects
bursts, it does not predict their actual buffer demands and
therefore cannot proportionally allocate buffer space to ports
based on their demands. AT low loads, EDT performs well.
However, at high loads, when there is a higher likelihood of
multiple bursts on different ports closer in time, EDT makes
sub-optimal allocations and suffers from longer tails. As we
see in Figure 3, Smartbuf outperforms all the other schemes
across all loads. Note that retransmission timeout (RTO) is 10
ms in our experiments, and even at the highest load, Smartbuf
nearly eliminates packet drops and improves tail FCTs by a

factor of 8. Because FAB’s performance is very close to that
of EDT, we only consider EDT in our experiments form now
on.

We conducted experiments with varying buffer sizes and
found that as long as the buffers are not too small (no oppor-
tunity) or too large (no buffer contention), Smartbuf ’s relative
performance remains robust. Although long flows benefit less
from buffering than short flows, aggressively depriving them
of buffer space during the bursts degrades their throughput and
causes fairness issues. For fairness, we designed an experiment
in which a long flow on one port competes with an incast on
another port. We plot the throughput of this long flow for EDT
and Smartbuf in Figure 4. We see a sudden drop in EDT’s long
flow throughput as most of the buffer space is allocated to the
incast port, irrespective of its demand. In contrast, Smartbuf ’s
proportional buffer allocation helps alleviate incast without
adversely affecting the throughput and fairness for long flows.

C. Parameter sensitivity

In this section, we discuss the sensitivity of our algorithm
to two main factors that we mentioned in Algorithm 1: β and
σ. Also, we discuss the sensitivity of our scheme to different
values of k in the k-nearest neighbors algorithm. Figure 5
shows the sensitivity of Smartbuf ’s performance to k for a
high load case (other loads not shown due to brevity). As
expected, smaller values of k impose less overhead but suffer
from inaccurate extrapolation of buffer demands. We achieve
the best trade-off between overhead and accuracy at k = 3
and further increase in k results only in diminishing returns.
Later, we show that our algorithm’s predicted buffer demand
closely matches actual demands at k = 3, thus providing a
desired high accuracy (Figure 8).

The parameter β (0 < β < 1) is a threshold on buffer
occupancy at any of the output ports, which determines
whether the current burst has ended. If we determine that the
burst has ended, we will insert updated values for gradient and
buffer occupancy into our database. Thus, smaller values of β
may mislead us to miss some bursts (i.e, lower performance),
whereas larger values may cause us to record one large
burst as several smaller bursts (i.e., high state overhead). Our
experiments show that if β is chosen between 0.2 and 0.5,
it reduces the number of entries in the Main_map by 44%
compared to β=0.9, while improving the performance (tail
latency) by 9% compared to when β is in the range of 0.01
to 0.19. We observed good, stable performance for β in the
range of 0.2 to 0.5.

Finally, we study the sensitivity of our algorithm to different
values of σ. σ (σ > 1) is a threshold that classifies spikes
in buffer usage as burst and non-burst. In other words, if
buffer occupancy is larger than a certain threshold, switch
decides to save this value because this burst has the potential to
occupy more buffer and there is a risk of packet drop. Figure 6
shows the result of this experiment. We see that we get better
performance for larger values of σ. While larger σ provides
high performance, it requires more processing as the size of
the database is considerably larger. Therefore, we opt for the

Fig. 7. Number of entries in the hash
table

Fig. 8. Predicted vs. actual buffer
demands: maximum prediction error
at each load

smallest value of σ that guarantees high performance (e.g.,
2.5 < σ < 5 in Figure 6).
D. Overhead

Next, we analyze the state/memory overhead of our algo-
rithm. Figure 7 shows the maximum number of key-value pairs
stored in our map under different loads (in a shared 4 MB
buffer). As expected, we observe that the number of entries
in our database (i.e., map) scales proportionally to the load.
Nevertheless, we see that even in the highest load, we require
less than 35 entries, which shows that our design is feasible in
practice. Further, as most datacenters operate at loads between
20% and 40%, our tables require less than 20 entries.
E. Accuracy

In this section, we quantify the accuracy of Smartbuf . To
quantify how precisely Smartbuf allocates buffer according
to flows’ requirements, we run an experiment in which we
allow flows to take as much memory as they need from a
hypothetically unbounded memory with the complete sharing
policy and compare it to the amount predicted by Smartbuf .
Figure 8 shows predicted demands vs. ideal (oracular) de-
mands for each load level when the difference between the two
(error) is maximum. The key takeaway is that our predicted
demands are very close to the oracular buffer demands (within
9% of the ideal).

V. RELATED WORK

In the preceding sections, we have discussed related work
in dynamic buffer allocation such as DT [10], EDT [11],
and FAB [16]. In this section, we will discuss related work
in congestion control [8,19] and flow scheduling. Reactive
congestion control schemes [8] require multiple RTTs and do
not quickly respond to incast. Recent approaches [14,19] that
speed up the response still require at least one RTT. Packet
scheduling approaches [6,20] use local information at switches
to prioritize certain packets based on both static (e.g., flow
size) and dynamic priority (e.g., queue length). However, their
efficacy is limited when during incast of short flows because
the contending flows have similar priorities. In such cases,
Smartbuf effectively uses buffer space from unused ports to
accommodate all contenting packets (flows). Buffer capacity is
a scarce resource in datacenter switches, which are known to
use shallow buffers [3]. The application push toward incast of
short flows and technology pull toward shallow buffers favor
smart management approaches.

VI. CONCLUSION AND FUTURE WORK

We present Smartbuf , an agile memory management scheme
for shared-memory switches in datacenters that accurately
predicts the buffer demands of ports based on switch-local
information and allocates the memory proportional to their
demands. Our experiments show that Smartbuf outperforms
existing state-of-the-art in tail latency by up to a factor of 8x
at high loads without sacrificing fairness among ports. With the
advent of programmable data planes, bursty datacenter traffic,
and ever-increasing line rate, online learning approaches that
rely on only switch-local information will become appealing
for resource management.

REFERENCES

[1] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, Feb. 2013.

[2] Y. Chen et al., “Understanding tcp incast throughput collapse in data-
center networks,” in Proceedings of the 1st ACM workshop on Research
on enterprise networking, 2009.

[3] “Arista 7050qx series 10/40g data center switches,” https://www.arista.
com/assets/data/pdf/Datasheets/7050QX-32_32S_Datasheet.pdf, 2020.

[4] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-resolution
measurement of data center microbursts,” ser. IMC’17. ACM, 2017.

[5] A. Roy et al., “Inside the social network’s (datacenter) network,” in
ACM SIGCOMM Computer Communication Review. ACM, 2015.

[6] M. Alizadeh et al., “pfabric: Minimal near-optimal datacenter transport,”
ser. SIGCOMM ’13. ACM, 2013.

[7] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
SIGCOMM Comput. Commun. Rev., vol. 34, no. 4, p. 281–292, Aug.
2004.

[8] M. Alizadeh et al., “Data center tcp (dctcp),” ser. SIGCOMM ’10, 2010,
p. 63–74.

[9] M. Mathis and A. McGregor, “Buffer sizing: a position paper,”
http://buffer-workshop.stanford.edu/papers/paper16.pdf, (Accessed on
06/23/2020).

[10] A. K. Choudhury and E. L. Hahne, “Dynamic queue length thresholds
for shared-memory packet switches,” IEEE/ACM Transactions on Net-
working, vol. 6, no. 2, pp. 130–140, 1998.

[11] D. Shan, W. Jiang, and F. Ren, “Absorbing micro-burst traffic by
enhancing dynamic threshold policy of data center switches,” in 2015
IEEE Conference on Computer Communications (INFOCOM), 2015.

[12] C. Guo et al., “Pingmesh: A large-scale system for data center network
latency measurement and analysis,” ser. SIGCOMM ’15, 2015, p.
139–152.

[13] Y. Zhu et al., “Packet-level telemetry in large datacenter networks,”
SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, p. 479–491, Aug.
2015.

[14] M. Handley et al., “Re-architecting datacenter networks and stacks for
low latency and high performance,” ser. SIGCOMM ’17, 2017.

[15] M. Arpaci and J. A. Copeland, “Buffer management for shared-memory
atm switches,” IEEE Communications Surveys Tutorials, vol. 3, no. 1,
pp. 2–10, 2000.

[16] M. Apostolaki, L. Vanbever, and M. Ghobadi, “Fab: Toward flow-aware
buffer sharing on programmable switches,” in Proceedings of the 2019
Workshop on Buffer Sizing, ser. BS ’19, 2019.

[17] Y. He, N. Batta, and I. Gashinsky, “Understanding switch buffer utiliza-
tion in clos data center fabric.”

[18] G. F. Riley and T. R. Henderson, The ns-3 Network Simulator. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 15–34.

[19] H. Almasi et al., “Pulser: Fast congestion response using explicit incast
notifications for datacenter networks,” ser. IEEE LANMAN’19.

[20] H. Rezaei and B. Vamanan, “Resqueue: A smarter datacenter flow
scheduler,” in Proceedings of The Web Conference 2020, 2020.

