
Published as a conference paper at ICLR 2024

FLAG AGGREGATOR: SCALABLE DISTRIBUTED
TRAINING UNDER FAILURES AND AUGMENTED LOSSES
USING CONVEX OPTIMIZATION

Hamidreza Almasi Harsh Mishra Balajee Vamanan Sathya N. Ravi
Department of Computer Science

University of Illinois Chicago
{halmas3, hmishr3, bvamanan, sathya}@uic.edu

ABSTRACT

Modern ML applications increasingly rely on complex deep learning models
and large datasets. There has been an exponential growth in the amount of
computation needed to train the largest models. Therefore, to scale computation
and data, these models are inevitably trained in a distributed manner in clusters
of nodes, and their updates are aggregated before being applied to the model.
However, a distributed setup is prone to Byzantine failures of individual nodes,
components, and software. With data augmentation added to these settings, there
is a critical need for robust and efficient aggregation systems. We define the
quality of workers as reconstruction ratios ∈ (0, 1], and formulate aggregation as a
Maximum Likelihood Estimation procedure using Beta densities. We show that the
Regularized form of log-likelihood wrt subspace can be approximately solved using
iterative least squares solver, and provide convergence guarantees using recent
Convex Optimization landscape results. Our empirical findings demonstrate that
our approach significantly enhances the robustness of state-of-the-art Byzantine
resilient aggregators. We evaluate our method in a distributed setup with
a parameter server, and show simultaneous improvements in communication
efficiency and accuracy across various tasks1.

1 INTRODUCTION

How to Design Aggregators? We consider the problem of designing aggregation functions that can
be written as optimization problems of the form,

A(g1, . . . , gp) ∈ arg min
Y ∈C

Ag1,...,gp(Y), (1)

where {gi}pi=1 ⊆ Rn are given estimates of an unknown summary statistic used to compute the
Aggregator Y ∗. If we choose A to be a quadratic function that decomposes over gi’s, and C = Rn,
then we can see A is simply the standard mean operator. There is a mature literature of studying
such functions for various scientific computing applications Grabisch et al. (2009). More recently,
from the machine learning standpoint there has been a plethora of work Balakrishnan et al. (2017);
Diakonikolas et al. (2019); Cheng et al. (2022); Diakonikolas et al. (2022) on designing provably
robust aggregatorsA for mean estimation tasks under various technical assumptions on the distribution
or moments of gi.

Distributed ML Use Cases. Consider training a model with a large dataset such as ImageNet-1K
Russakovsky et al. (2015) or its augmented version which would require data to be distributed
over p workers and uses back propagation. Indeed, in this case, gi’s are typically the gradients
computed by individual workers at each iteration. In settings where the training objective is convex,
the convergence and generalization properties of distributed optimization can be achieved by defining
A as a weighted combination of gradients facilitated by a simple consensus matrix, even if some
gi’s are noisy Tsianos and Rabbat (2012); Yang et al. (2019a). In a distributed setup, as long as the

1Our code is available at https://github.com/hamidralmasi/FlagAggregator

1

https://github.com/hamidralmasi/FlagAggregator

Published as a conference paper at ICLR 2024

…

𝐺!: 𝑤!×

…

𝑈 ∈ 𝑅"×" Σ ∈ 𝑅"×$
𝑉% ∈ 𝑅$×$

𝑌 = 𝑈[: , 1:𝑚]

𝐺 = 𝐺!|𝐺&|⋯ |𝐺"

× ×
𝑌 1

𝑝
𝑌𝑌%𝐺1

𝑑
𝐺'(,

1 ≤ 𝑖 ≤ 𝑝,
1 ≤ 𝑗 ≤ 𝑛

SVD

∗ 5
𝑔!! 𝑔!" 𝑔!#

𝑔"! 𝑔"" 𝑔"#

𝑔$!𝑔$" 𝑔$#

…

…

…

𝑔 !
(𝑡)

𝑔"
(𝑡)

𝑔 #
(𝑡
)

……

𝑔 !
(𝑡
+
1)

𝑔"
(𝑡

+
1)

𝑔 #
(𝑡
+
1)

……

𝑑)*!𝑑)

𝑔'
1 ≤ 𝑖 ≤ 𝑝

Left	singular	
vectors

iteration 𝑡

Augmented	Data

Stable	Diffusion
𝑔! + 𝑛, 𝑛~𝑁(0, 𝜎"𝐼)

𝑔! + 𝑛, 𝑛~𝑁(0,𝑊)

Augmented	Data

Stable	Diffusion
𝑔! + 𝑛, 𝑛~𝑁(0, 𝜎"𝐼)

𝑔! + 𝑛, 𝑛~𝑁(0,𝑊) iteration 𝑡 + 1

Right	singular	
vectors

Singular	
values

Concatenated	
gradient	matrix

Gradients	from	
workers

Weights	for	
workers’	
gradient	
subspaces

𝐺&: 𝑤&×

𝐺": 𝑤"×

…

Flag	Aggregator

Estimate	Subspace	for	Aggregation

Figure 1: Robust gradient aggregation in our distributed training framework. In our applications, each of
the p workers provides gradients computed using a random sample obtained from given training data, derived
synthetic data from off-the-shelf Diffusion models, and random noise in each iteration. Our Flag Aggregator
(FA) removes high frequency noise components by using few rounds of Singular Value Decomposition of the
concatenated Gradient Matrix G, and provides new update Y ∗.

model is convex we can simultaneously minimize the total iteration or communication complexity
to a significant extent i.e., it is possible to achieve convergence and robustness under technical
assumptions on the moments of (unknown) distribution from which gi’s are drawn. However, it is
still an open problem to determine the optimality of these procedures in terms of either convergence
or robustness Blanchard et al. (2017); Farhadkhani et al. (2022).

Potential Causes of Noise. When data is distributed among workers, hardware and software failures
in workers Bautista-Gomez et al. (2016); Schroeder and Gibson (2007); Gill et al. (2011) can cause
them to send incorrect gradients, which can significantly mislead the model Baruch et al. (2019).
To see this, let’s consider a simple experiment with 15 workers, that f of them produce uniformly
random gradients. Figure 2 shows that the model accuracy is heavily impacted when f > 0 when
mean is used to aggregate the gradients.

0 10 20 30 40 50
Epoch

10

20

30

40

50

60

To
p-

1
Ac

cu
ra

cy
 (%

)

Mean, f = 0
Mean, f = 1
Mean, f = 2
Mean, f = 3

Figure 2: Tolerance to f
Byzantine workers for a
non-robust aggregator (mean).

The failures can occur due to component or software failures
and their probability increases with the scale of the system Wang
et al. (2017); Tiwari et al. (2015); Nie et al. (2016). Reliability
theory is used to analyze such failures, see Chapter 9 in Ross
(2014), but for large-scale training, the distribution of total system
failures is not independent over workers, making the total noise in
gradients dependent and a key challenge for large-scale training.
Moreover, even if there are no issues with the infrastructure, our
work is motivated by the prevalence of data augmentation, including
hand-chosen augmentations. Since number of parameters n is often
greater than number of samples, data augmentation improves the
generalization capabilities of large-scale models under technical
conditions Yang et al. (2019b); Heinze-Deml and Meinshausen
(2017); Motiian et al. (2017). In particular, Adversarial training
is a common technique that finds samples that are close to training
samples but classified as a different class at the current set of parameters, and then use such samples
for parameter update purposes Addepalli et al. (2022). Unfortunately, computing adversarial samples
is often difficult Wong et al. (2020), done using randomized algorithms Cohen et al. (2019) and
so may introduce dependent (across samples) noise themselves. In other words, using adversarial
training paradigm, or the so-called inner optimization can lead to noise in gradients, which can cause
or simulate dependent “Byzantine” failures in the distributed context – since the final parameters are
influenced by these samples.

2

Published as a conference paper at ICLR 2024

Available Computational Solutions. Most existing open source implementations of A rely just
on (functions of) pairwise distances to filter gradients from workers using suitable neighborhood
based thresholding schemes, based on moment conditions Allouah et al. (2023a;b); Farhadkhani
et al. (2022). While these may be a good strategy when the noise in samples/gradients is somewhat
independent, these methods are suboptimal when the noise is dependent or nonlinear, especially when
n is large. Moreover, choosing discrete hyperparameters such as number of neighbors is impractical
in our use cases since they hamper convergence of the overall training procedure. To mitigate the
suboptimality of existing aggregation schemes, we explicitly estimate a subspace Y spanned by
“most” of the gradient workers, and then use this subspace to estimate that a sparse linear combination
of gi gradients, acheiving robustness.

We present a new optimization based formulation for generalized gradient aggregation purposes in
the context of distributed training of deep learning architectures, as shown in Figure 1.

Summary of our Contributions. From the theoretical perspective, we present a simple Maximum
Likelihood Based estimation procedure for aggregation purposes, with novel regularization functions.
Algorithmically, we argue that any procedure used to solve Flag Optimization can be directly used to
obtain the optimal summary statistic Y ∗ for our aggregation purposes. Experimentally, our results
show resilience against Byzantine attacks, encompassing physical failures, while effectively managing
the stochasticity arising from data augmentation schemes. In practice, we achieve a significantly
(≈ 20%) better accuracy on standard datasets. Our implementation offers substantial advantages in
reducing communication complexity across diverse noise settings through the utilization of our novel
aggregation function, making it applicable in numerous scenarios.

2 ROBUST AGGREGATORS AS ORTHOGONALITY CONSTRAINED
OPTIMIZATION

In this section, we first provide the basic intuition of our proposed approach to using subspaces
for aggregation purposes using linear algebra, along with connections of our approach standard
eigendecomposition based denoising approaches. We then present our overall optimization
formulation in two steps, and argue that it can be optimized using existing methods.

2.1 OPTIMAL SUBSPACE HYPOTHESIS FOR DISTRIBUTED DESCENT

We will use lowercase letters y, g to denote vectors, and uppercase letters Y,G to denote
matrices. We will use boldfont 1 to denote the vector of all ones in appropriate dimensions.
Let gi ∈ Rn be the gradient vector from worker i, and Y ∈ Rn×m be an orthogonal
matrix representation of a subspace that gradients could live in such that m ≤ p.

0.0 0.2 0.4 0.6 0.8 1.0
Value of Workers (v)

0
250
500
750

1000
1250
1500
1750
2000

Fr
eq

ue
nc

y

Optimal
Subspace
Suboptimal
Subspace

Figure 3: Distributions
of Explained Variances on
Minibatches

Now, we may interpret each column of Y as a basis function that
act on gi ∈ Rn, i.e., j−th coordinate of (Y T g)j for 1 ≤ j ≤
m is the application of j−th basis or column of Y on g. Recall
that by definition of dot product, we have that if Y:,j ⊥ g, then
(Y T g)j will be close to zero. Equivalently, if g ∈ span(Y), then
(Y T g)TY T g will be bounded away from zero, see Chapter 2 in
Absil (2008). Assuming that G ∈ Rn×p is the gradient matrix of
p workers, Y Y TG ∈ Rn×p is the reconstruction of G using Y as
basis. That is, ith column of Y TG specifies the amount of gradient
from worker i as a function of Y , and high l2 norm of Y T gi implies
that there is a basis in Y such that Y ̸⊥ gi. So it is easy to see that
the average over columns of Y Y TG would give the final gradient
for update. Please refer to Section C in the supplement for more
detail.

Explained Variance of worker i. If we denote zi = Y T gi ∈ Rm representing the transformation
of gradient gi to zi using Y , then, 0 ≤ ∥zi∥22 = zTi zi = (Y T gi)

TY T gi = gTi Y Y T gi is a scalar,
and so is equal to its trace tr

(
gTi Y Y T gi

)
. Moreover, when Y is orthogonal, we have 0 ≤ ∥zi∥2 =

∥Y T gi∥2 ≤ ∥Y ∥2∥gi∥2 ≤ ∥gi∥2 since the operator norm (or largest singular value) ∥Y ∥2 of Y is at
most 1. Our main idea is to use ∥zi∥22, ∥gi∥22 to define the quality of the subspace Y for aggregation,
as is done in some previous works for Robust Principal Component Estimation Wright et al. (2009) –

3

Published as a conference paper at ICLR 2024

the quantity ∥zi∥22/∥gi∥22 is called as Explained/Expressed variance of subspace Y wrt i−th worker
Hein and Bühler (2010); Chakraborty et al. (2017) – we refer to ∥zi∥22/∥gi∥22 as the “value” of i−th
worker. In Figure 3, we can see from the spike near 1.0 that if we choose the subspace carefully
(blue) as opposed to merely choosing the mean gradient (with unit norm) of all workers, then we can
increase the value of workers.

Advantages of Subspace based Aggregation. We can see that using subspace Y , we can easily: 1.
handle different number of gradients from each worker, 2. compute gradient reconstruction Y Y TG
efficiently whenever Y is constrained to be orthogonal Y =

∑
i yiy

T
i where yi is the i−th column of

Y , otherwise have to use eigendecomposition of Y to measure explained variance which can be time
consuming. Please refer to the supplement for more details on reconstruction and why we require
orthogonality constraint. In (practical) distributed settings, the quality (or noise level) of gradients
in each worker may be different, and/or each worker may use a different batch size. In such cases,
handcrafted aggregation schemes may be difficult to maintain, and fine-tune. For these purposes with
an Orthogonal Subspace Y , we can simply reweigh gradients of worker i according to its noise level,
and/or use gi ∈ Rn×bi where bi is the batch size of i−th worker with tr(zTi zi) instead.

Why is optimizing over subspaces called “Flag” Optimization? Recent optimization results
suggest that we can exploit the finer structure available in Flag Manifold to specify Y more precisely
Monk (1959). For example, Y ∈ Rn×m can be parametrized directly as a subspace of dimension
m or as a nested sequence of Yk ∈ Rn×mk , k = 1, ...,K where mk < mk+1 ≤ p ≤ n such
that span(Yk) ⊆ span(Yk+1) with YK ∈ Rn×m. When mk+1 = mk = 1, we have the usual
(real) Grassmanian Manifold (quotient of orthogonal group) whose coordinates can be used for
optimization, please see Section 5 in Ye et al. (2022) for details. In fact, Mankovich et al. (2022)
used this idea to extend median in one-dimensional vector spaces to different finite dimensional
subspaces using the so-called chordal distance between them. In our distributed training context,
we use the explained variance of each worker instead. Here, workers may specify dimensions along
which gradient information is relevant for faster convergence – an advantage currently not available in
existing aggregation implementations – which may be used for smart initialization also. We use “Flag”
to emphasize this additional nested structure available in our formulation for distributed training
purposes.

2.2 APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION OF OPTIMAL SUBSPACE

Now that we can evaluate a subspace Y on individual gradients gi, we now show that finding subspace
Y can be formulated using standard maximum likelihood estimation principles Murphy (2022). Our
formulation reveals that regularization is critical for aggregation especially in distributed training. In
order to write down the objective function for finding optimal Y , we proceed in the following two
steps:

Step 1. Assume that each worker provides a single gradient for simplicity. Now, denoting the value of
information v of worker i by vi =

zT
i zi

gT
i gi

, we have vi ∈ [0, 1]. Now by assuming that vi’s are observed

from Beta distribution with α = 1 and β = 1
2 (for simplicity), we can see that the likelihood P(vi) is,

P(vi) :=
(1− vi)

− 1
2

B(1, 1
2)

=

(
1− zT

i zi
gT
i gi

)− 1
2

B(1, 1
2)

, (2)

where B(a, b) is the normalization constant. Then, the total log-likelihood of observing gradients gi
as a function of Y (or vi’s) is given by taking the log of product of P(vi)’s as (ignoring constants),

log

(
p∏

i=1

P(vi)

)
=

p∑
i=1

log (P(vi)) = −
1

2

p∑
i=1

log(1− vi). (3)

Step 2. Now we use Taylor’s series with constant a > 0 to approximate individual worker
log-likelihoods log(1− vi) ≈ a(1− vi)

1
a − a as follows: first, we know that exp

(
log(vi)

a

)
= v

1
a
i .

On the other hand, using Taylor expansion of exp about the origin (so large a > 1 is better), we have
that exp

(
log(vi)

a

)
≈ 1+ log(vi)

a . Whence, we have that 1+ log(vi)
a ≈ v

1
a
i which immediately implies

4

Published as a conference paper at ICLR 2024

that log(vi) ≈ av
1
a
i − a. So, by substituting the Taylor series approximation of log in Equation 3, we

obtain the negative log-likelihood approximation to be minimized for robust aggregation purposes as,

− log

(
p∏

i=1

P(vi)

)
≈ 1

2

p∑
i=1

(
a (1− vi)

1
a − a

)
, (4)

where a > 1 is a sufficiently large constant. In the above mentioned steps, the first step is standard.
Our key insight is using Taylor expansion in (4) with a sufficiently large a to eliminate log optimization
which are known to be computationally expensive to solve, and instead solve smooth ℓa, a > 1
norm based optimization problems which can be done efficiently by modifying existing procedures
Fornasier et al. (2011).

Extension to general beta distributions, and gradients α > 0, β > 0, gi ∈ Rn×k. Note that our
derivation in the above two steps can be extended to any beta shape parameters α > 0, β > 0 – there
will be two terms in the final negative log-likelihood expression in our formulation (4), one for each
α, β. Similarly, by simply using vi = tr

(
gTi Y Y T gi

)
to define value of worker i in equation (2), and

then in our estimator in (4), we can easily handle multiple k gradients from a single worker i for Y .

2.3 FLAG AGGREGATOR FOR DISTRIBUTED OPTIMIZATION

It is now easy to see that by choosing a = 2, in equation (4), we obtain the negative loglikelihood
(ignoring constants) as (

∑p
i=1

√
1− gTi Y Y T gi) showing that Flag Median can indeed be seen as an

Maximum Likelihood Estimator (MLE). In particular, Flag Median Mankovich et al. (2022) can be
seen as an MLE of Beta Distribution with parameters α = 1 and β = 1

2 . Recent results suggest that in
many cases, MLE is ill-posed, and regularization is necessary, even when the likelihood distribution
is Gaussian Karvonen and Oates (2023). So, based on the Flag Median estimator for subspaces,
we propose an optimization based subspace estimator Y ∗ for aggregation purposes. We formulate
our Flag Aggregator (FA) objective function with respect to Y as a regularized sum of likelihood
based (or data) terms in (4) using trace operators tr(·) as the solution to the following constrained
optimization problem:

min
Y :Y TY=I

A(Y) :=

p∑
i=1

√√√√(1− tr
(
Y T gigTi Y

)
∥gi∥22

)
+ λR(Y) (5)

where λ > 0 is a regularization hyperparameter. In our analysis, and implementation, we provide
support for two possible choices forR(Y):

(1) Mathematical norms: R(Y) can be a form of norm-based regularization other than ∥Y ∥2Fro since
it is constant over the feasible set in (5). For example, it could be convex norm with efficient convex
approximation using trace functions such as, i.e. element-wise:

∑n
i=1

∑m
j=1 |Yij | ≈ tr(Y TY)/δ

where δ > 0 is the tolerance parameter for regularization subsumed within λ,
(2) Data-dependent norms: Following our subspace construction in Section 2.1, we may choose

R(Y) = 1
p−1

∑p
i,j=1,i̸=j

√(
1− tr(Y T (gi−gj)(gi−gj)

TY)

D2
ij

)
where D2

ij = ∥gi − gj∥22 denotes the

distance between gradient vectors gi, gj from workers i, j. Intuitively, the pairwise terms in our
loss function (5) favors subspace Y that also reconstructs the pairwise vectors gi− gj that are close
to each other. So, by setting λ = Θ(p), that is, the pairwise terms dominate the objective function
in (5). Hence, λ regularizes optimal solutions Y ∗ of (5) to contain gi’s with low pairwise distance
in its span – similar in spirit to AggregaThor in Damaskinos et al. (2019).

Convergence of Flag Aggregator (FA) Algorithm 1. With these, we can state our main algorithmic
result showing that our FA (5) can be solved efficiently using standard convex optimization proof
techniques. In particular, in supplement, we present a smooth Semi-Definite Programming (SDP)
relaxation of FA in equation (5) using the Flag structure. We use the SDP relaxation of the MLE
in (4) to argue that solving FA problem may be tractable since SDPs can be solved efficiently from
the theoretical standpoint. With this, we can view the IRLS procedure in 1 as solving the low rank
parametrization of the smooth SDP relaxation, thus guaranteeing fast convergence to second order
optimal (local) solutions. Importantly, our SDP based proof works for any degree of approximation
of the constant a in equation (4) and only relies on smoothness of the loss function wrt Y , although
speed of convergence is reduced for higher values of a ̸= 2, see Chen et al. (2020a).

5

Published as a conference paper at ICLR 2024

Algorithm 1 Distributed SGD with proposed Flag Aggregator (FA) with elementwise ℓ1 regularization
Input: Number of workers p, loss functions l1, l2, ..., lp, per-worker minibatch size B, learning rate

schedule αt, initial parameters w0, number of iterations T
Output: Updated parameters wT from any worker

1 for t = 1 to T do
2 for p = 1 to p in parallel on machine p do
3 Select a minibatch: ip,1,t, ip,2,t,. . . ,ip,B,t gp,t ← 1

B

∑B
b=1∇lip,b,t

(wt−1)

4 Gt ← {g1,t, · · · , gp,t} // Parameter Server receives gradients from p workers

5 Ŷt ← SVDm(Gt) with Ĝt is the Cholesky factor of GtDtG
T + λI where I ∈ Rn×n identity

matrix // Do IRLS at the Parameter Server for Ŷ

6 Obtain gradient direction dt: dt = 1
p ŶtŶ

T
t Gt1 // Compute, Send dt to all p machines

7 for p = 1 to p in parallel on machine p do
8 update model: wt ← wt−1 − αt · dt

9 Return wT

IRLS procedure in Algorithm 1. IRLS is a standard optimization technique in which we substitute
general norm functions with weighted euclidean norm functions. The key advantage of this
substitution is that we may obtain closed form solution to the substituted euclidean norm version.
Starting from a (random) feasible point Yold, the weights are calculated with the general norm
functions. Then, the solution Ynew to the weighted euclidean norm optimization is obtained. This
corresponds to one iteration in IRLS and repeating the above step with this new Ynew corresponds to
the IRLS procedure. For aggregation purposes in FA, in each iteration the square root function or
more generally, the a−th root function in equation (4) is replaced by reweighted quadratic function
which has a closed-form solution given by SVD.

How is FA aggregator different from (Bulyan and Multi-Krum)? Bulyan is a strong Byzantine
resilient gradient aggregation rule for p ≥ 4f + 3 where p is the total number of workers and f is
the number of Byzantine workers. Bulyan is a two-stage algorithm. In the first stage, a gradient
aggregation rule R like coordinate-wise median Yin et al. (2018) or Krum Blanchard et al. (2017)
is recursively used to select θ = p− 2f gradients. The process uses R to select gradient vector gi
which is closest to R’s output (e.g. for Krum, this would be the gradient with the top score, and
hence the exact output of R). The chosen gradient is removed from the received set and added to
the selection set S repeatedly until |S| = θ. The second stage produces the resulting gradient. If
β = θ − 2f , each coordinate would be the average of β-nearest to the median coordinate of the θ
gradients in S. In matrix terms, if we consider S ∈ Rp×m as a matrix with each column having
one non-zero entry summing to 1, Bulyan would return 1

mReLU(GS)1m, where 1m ∈ Rm is the
vector of all ones, while FA would return 1

pY Y TG1p. Importantly, the gradient matrix is being
right-multiplied in Bulyan, but left-multiplied in FA, before getting averaged. While this may seem
like a discrepancy, in supplement we show that by observing the optimality conditions of (5) wrt Y ,
we show that 1

mY Y TG can be seen as a right multiplication by a matrix parametrized by lagrangian
multipliers associated with the orthogonality constraints in (5). This means it should be possible to
combine both approaches for faster aggregation.

3 EXPERIMENTS

In this section, we conduct experiments to test our proposed FA in the context of distributed training
in two testbeds. First, to test the performance of our FA scheme solved using IRLS (Flag Mean) on
standard Byzantine benchmarks. Then, to evaluate the ability of existing state-of-the-art gradient
aggregators we augment data via two techniques that can be implemented with Sci-kit package.

Implementation Details. We implement FA in Pytorch Paszke et al. (2019), which is popular
but does not support Byzantine resilience natively. We adopt the parameter server architecture and
employ Pytorch’s distributed RPC framework with TensorPipe backend for machine-to-machine
communication. We extend Garfield’s Pytorch library Guerraoui et al. (2021) with FA and limit our

6

Published as a conference paper at ICLR 2024

IRLS convergence criteria to a small error, 10−10, or 5 iterations of flag mean for SVD calculation.
We set m = ⌈p+1

2 ⌉.

3.1 SETUP

Baselines: We compare FA to several existing aggregation rules: (1) coordinate-wise Trimmed
Mean Yin et al. (2018) (2) coordinate-wise Median Yin et al. (2018) (3) mean-around-median
(MeaMed) Xie et al. (2018a) (4) Phocas Xie et al. (2018b) (5) Multi-Krum Blanchard et al. (2017)
(6) Bulyan El Mhamdi et al. (2018). In the supplement, we also compare FA to using the (7) top-m
principal components of the gradient matrix, (8) RESAM Farhadkhani et al. (2022), and (9) CGE
Gupta et al. (2021) as baselines.

Accuracy: The fraction of correct predictions among all predictions, using the test dataset (top-1
cross-accuracy).

Testbed: We used 4 servers as our experimental platform. Each server has 2 Intel(R) Xeon(R) Gold
6240 18-core CPU @ 2.60GHz with Hyper-Threading and 384GB of RAM. Servers have a Tesla
V100 PCIe 32GB GPU and employ a Mellanox ConnectX-5 100Gbps NIC to connect to a switch.
We use one of the servers as the parameter server and instantiate 15 workers on other servers, each
hosting 5 worker nodes, unless specified differently in specific experiments. For the experiments
designed to show scalability, we instantiate 60 workers.

Dataset and model: We focus on the image classification task since it is a widely used task for
benchmarking in distributed training Chilimbi et al. (2014). We train ResNet-18 He et al. (2016) on
CIFAR-10 Krizhevsky (2009) which has 60,000 32 × 32 color images in 10 classes. For the scalability
experiment, we train a CNN with two convolutional layers followed by two fully connected layers
on MNIST LeCun and Cortes (2010) which has 70,000 28 × 28 grayscale images in 10 classes. We
also run another set of experiments on Tiny ImageNet Le and Yang (2015) in the supplement. We
use SGD as the optimizer, and cross-entropy to measure loss. The batch size for each worker is 128
unless otherwise stated. Also, we use a learning decay strategy where we decrease the learning rate
by a factor of 0.2 every 10 epochs.

Threat models: We assess the performance of FA in the presence of various categories of Byzantine
workers. These categories encompass scenarios where workers either transmit gradients chosen

uniformly at random in [0, 1) with µ = 0.5 and σ =
√

1
12 or provide incomplete tensors. These

scenarios serve as representations of errors in the physical settings. Additionally, workers may
employ non-linear augmented data, as described below. In the supplement, we also evaluate FA when
Byzantine workers send 10x amplified sign-flipped gradients Allen-Zhu et al. (2021) or send the
gradients based on the Fall of Empires attack with ϵ = 0.1 Xie et al. (2020).

Evaluating resilience against nonlinear data augmentation: In order to induce Byzantine behavior
in our workers we utilize ODE solvers to approximately solve 2 non-linear processes, Lotka Volterra
Kelly (2016) and Arnold’s Cat Map Bao and Yang (2012), as augmentation methods. Since the
augmented samples are deterministic, albeit nonlinear functions of training samples, the “noise” is
dependent across samples.

In Lotka Volterra, we use the following linear gradient transformation of 2D pixels:
(x, y)→ (αx− βxy, δxy − γy),

where α, β, γ and δ are hyperparameters. We choose them to be 2
3 , 4

3 , −1 and −1 respectively.

Second, we use a nonsmooth transformation called Arnold’s Cat Map as a data augmentation scheme.
Once again, the map can be specified using a two-dimensional matrix as,

(x, y)→
(
2x+ y

N
,
x+ y

N

)
mod 1,

where mod represents the modulus operation, x and y are the coordinates or pixels of images and N
is the height/width of images (assumed to be square). We also used a smooth approximation of the
Cat Map obtained by approximating the mod function as,

(x, y)→ 1

n

(
2x+ y

(1 + exp(−m log(α1)
,

x+ y

(1 + exp(−m log(α2)

)
,

7

Published as a conference paper at ICLR 2024

Flag Aggregator
Bulyan

Multi-Krum
MeaMed

Median
Trimmed Mean

Phocas

0 10 20 30 40
Epoch

10

20

30

40

50

60

70

To
p-

1
Ac

cu
ra

cy
 (%

)

(a) f = 1

0 10 20 30 40
Epoch

10

20

30

40

50

60

To
p-

1
Ac

cu
ra

cy
 (%

)

(b) f = 2

0 10 20 30 40
Epoch

10

20

30

40

50

To
p-

1
Ac

cu
ra

cy
 (%

)

(c) f = 3

Figure 4: Tolerance to the number of Byzantine workers for robust aggregators for batch size 128.

0 10 20 30
Epoch

10

20

30

40

50

60

To
p-

1
Ac

cu
ra

cy
 (%

)

(a) bs = 64

0 10 20 30
Epoch

10

20

30

40

50

To
p-

1
Ac

cu
ra

cy
 (%

)

(b) bs = 128

0 10 20 30
Epoch

10

20

30

40

50

To
p-

1
Ac

cu
ra

cy
 (%

)

(c) bs = 192

Figure 5: Marginal utility of larger batch sizes under a fixed noise level f = 3.

where α1 = 2x+y
n , α2 = x+y

n , and m is the degree of approximation, which we choose to be
0.95 in our data augmentation experiments. Please refer to the appendix F.3 where we explain our
implementation for nonlinear data augmentation routines.

3.2 RESULTS

Tolerance to the number of Byzantine workers: In this experiment, we show the effect of Byzantine
behavior on the convergence of different gradient aggregation rules in comparison to FA. Byzantine
workers send uniformly random gradients in [0, 1] with coordinatewise mean 0.5 and standard

deviation
√

1
12 and we vary the number of these workers from 1 to 3. Figure 4 shows that for some

rules, i.e. Trimmed Mean, the presence of even a single Byzantine worker has a catastrophic impact.
For other rules, as the number of Byzantine workers increases, filtering out the outliers becomes more
challenging because the amount of noise increases. Regardless, FA remains more robust

Marginal utility of larger batch sizes under a fixed noise level: We empirically verified the
batch size required to identify our optimal Y ∗ - the FA matrix at each iteration. In particular, we
fixed the noise level to f = 3 Byzantine workers and varied batch sizes. Similar to the previous
experiment, Byzantine workers send uniformly random gradients. We show the results in Figure 5.
Our results indicate that, in cases where a larger batch size is a training requirement, FA
achieves a significantly better accuracy compared to the existing state of the art aggregators.
This may be useful in some large scale vision applications, see Keskar et al. (2017); You et al. (2019)
for more details. Empirically, we can already see that our spectral relaxation to identify gradient
subspace is effective in practice in all our experiments.

Tolerance to communication loss: To analyze the effect of unreliable communication channels
between the workers and the parameter server on convergence, we design an experiment where the
physical link between some of the workers and the parameter server randomly drops a percentage of
packets. Here, we set the loss rate of three links to 10% i.e., there are 3 Byzantine workers in our
setting. The loss is introduced using the netem queuing discipline in Linux designed to emulate the
properties of wide area networks Hsieh et al. (2017). The two main takeaways in Figure 6a are:

8

Published as a conference paper at ICLR 2024

Flag Aggregator Bulyan Multi-Krum MeaMed Median Trimmed Mean Phocas

0 10 20
Epoch

10

20

30

40

50

60

To
p-

1
Ac

cu
ra

cy
 (%

)

(a) p = 15, f = 3

0 10 20 30
Epoch

10

20

30

40

50

60

To
p-

1
Ac

cu
ra

cy
 (%

)

(b) p = 11, f = 2

0 10 20 30
Epoch

10

20

30

40

50

60

To
p-

1
Ac

cu
ra

cy
 (%

)

(c) p = 13, f = 2

0 10 20 30
Epoch

10

20

30

40

50

60

To
p-

1
Ac

cu
ra

cy
 (%

)

(d) p = 15, f = 2

Figure 6: We present results under two different gradient attacks. The attack in (a) corresponds to
dropping 10% of gradients from f workers. The attacks in (b)-(d) correspond to generic f workers
sending random gradient vectors, i.e. we fix the noise level while adding more workers.

1. FA converges to a significantly higher accuracy than other aggregators, and thus is more
robust to unreliable underlying network transports.
2. Considering time-to-accuracy for comparison, FA reaches a similar accuracy in less total
number of training iterations, and thus is more robust to slow underlying network transports.

Analyzing the marginal utility of additional workers. To see the effect of adding more workers
to a fixed number of Byzantine workers, we ran experiments where we fixed f , and increased p.
Our experimental results shown in Figures 6b-6d indicate that our FA algorithm possesses strong
resilience property for reasonable choices of p.

The effect of having augmented data during training in Byzantine workers: Figure 7 shows FA
can handle nonlinear data augmentation in a much more stable fashion. Please see supplement for
details on the level of noise, and exact solver settings that were used to obtain augmented images.

Flag Aggregator
Bulyan
Multi-Krum
MeaMed
Median
Trimmed Mean
Phocas

0 10 20 30
Epoch

10

20

30

40

50

60

To
p-

1
Ac

cu
ra

cy
 (%

)

Figure 7: Accuracy of
using augmented data in
f = 3 workers

0 5 10 15 20
Epoch

10

20

30

40

50

60

70

To
p-

1
Ac

cu
ra

cy
 (%

)

FA, = 0
FA, = 4
FA, = 8
FA, = 16
Bulyan
Multi-Krum

Figure 8: CIFAR-10 with
ResNet-18, p = 7, and f =
1

0 5 10 15 20
Epoch

20

40

60

80

100

To
p-

1
Ac

cu
ra

cy
 (%

)
FA, p = 15, f = 3
FA, p = 30, f = 6
FA, p = 60, f = 12

Figure 9: Scaling FA to
larger setups

The effect of the regularization parameter in FA: The data-dependent regularization parameter λ
in FA provides flexibility in the loss function to cover aggregators that benefit from pairwise distances
such as Bulyan and Multi-Krum. To verify whether varying λ can interpolate Bulyan and Multi-Krum,
we change λ in Figure 8. We can see when FA improves or performs similarly for a range of λ. Here,
we set p and f to satisfy the strong Byzantine resilience condition of Bulyan, i.e, p ≥ 4f + 3.

Scaling out to real-world situations with more workers: In distributed ML, p and f are usually
large. To test high-dimensional settings commonly dealt in Semantic Vision with our FA, we used
ResNet-18. Now, to specifically test the scalability of FA, we fully utilized our available GPU servers
and set up to p = 60 workers (up to f = 14 Byzantine) with the MNIST dataset and a simple CNN
with two convolutional layers followed by two fully connected layers (useful for simple detection).
Figure 9 shows evidence that FA is feasible for larger setups.

4 CONCLUSION

In this paper we proposed Flag Aggregator (FA) that can be used for robust aggregation of gradients
in distributed training. FA is an optimization-based subspace estimator that formulates aggregation as
a Maximum Likelihood Estimation procedure using Beta densities. We perform extensive evaluations
of FA and show it can be effectively used in providing Byzantine resilience for gradient aggregation.
Using techniques from convex optimization, we theoretically analyze FA and with tractable relaxations
show its amenability to be solved by off-the-shelf solvers or first-order reweighing methods.

9

Published as a conference paper at ICLR 2024

5 ACKNOWLEDGEMENTS

We are grateful to UIC-ICR start-up funds and Discovery Partners Institute for supporting our work.
We thank anonymous ICLR 2024 reviewers for their time, suggestions, and constructive criticism
throughout the review process which ultimately led to an improved version of our submission.

REFERENCES

Michel Grabisch, Jean-Luc Marichal, Radko Mesiar, and Endre Pap. Aggregation functions, volume
127. Cambridge University Press, 2009.

Sivaraman Balakrishnan, Simon S. Du, Jerry Li, and Aarti Singh. Computationally efficient robust
sparse estimation in high dimensions. In Satyen Kale and Ohad Shamir, editors, Proceedings of the
2017 Conference on Learning Theory, volume 65 of Proceedings of Machine Learning Research,
pages 169–212. PMLR, 07–10 Jul 2017. URL https://proceedings.mlr.press/v65/
balakrishnan17a.html.

Ilias Diakonikolas, Daniel Kane, Sushrut Karmalkar, Eric Price, and Alistair Stewart. Outlier-robust
high-dimensional sparse estimation via iterative filtering. Advances in Neural Information
Processing Systems, 32, 2019.

Yu Cheng, Ilias Diakonikolas, Rong Ge, Shivam Gupta, Daniel M. Kane, and Mahdi Soltanolkotabi.
Outlier-robust sparse estimation via non-convex optimization. Advances in Neural Information
Processing Systems, 2022.

Ilias Diakonikolas, Daniel M. Kane, Sushrut Karmalkar, Ankit Pensia, and Thanasis Pittas. Robust
sparse mean estimation via sum of squares. In Po-Ling Loh and Maxim Raginsky, editors,
Proceedings of Thirty Fifth Conference on Learning Theory, volume 178 of Proceedings of Machine
Learning Research, pages 4703–4763. PMLR, 02–05 Jul 2022. URL https://proceedings.
mlr.press/v178/diakonikolas22e.html.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Konstantinos I Tsianos and Michael G Rabbat. Distributed strongly convex optimization. In 2012
50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
593–600. IEEE, 2012.

Tao Yang, Xinlei Yi, Junfeng Wu, Ye Yuan, Di Wu, Ziyang Meng, Yiguang Hong, Hong Wang,
Zongli Lin, and Karl H Johansson. A survey of distributed optimization. Annual Reviews in
Control, 47:278–305, 2019a.

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning
with adversaries: Byzantine tolerant gradient descent. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, page 118–128. Curran Associates
Inc., 2017. ISBN 9781510860964.

Sadegh Farhadkhani, Rachid Guerraoui, Nirupam Gupta, Rafael Pinot, and John Stephan. Byzantine
machine learning made easy by resilient averaging of momentums. In International Conference on
Machine Learning, pages 6246–6283. PMLR, 2022.

Leonardo Bautista-Gomez, Ferad Zyulkyarov, Osman Unsal, and Simon McIntosh-Smith.
Unprotected computing: A large-scale study of dram raw error rate on a supercomputer. In SC

’16: Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 645–655, 2016. doi: 10.1109/SC.2016.54.

Bianca Schroeder and Garth A. Gibson. Disk failures in the real world: What does an mttf of
1,000,000 hours mean to you? In Proceedings of the 5th USENIX Conference on File and Storage
Technologies, FAST ’07, page 1–es, USA, 2007. USENIX Association.

10

https://proceedings.mlr.press/v65/balakrishnan17a.html
https://proceedings.mlr.press/v65/balakrishnan17a.html
https://proceedings.mlr.press/v178/diakonikolas22e.html
https://proceedings.mlr.press/v178/diakonikolas22e.html

Published as a conference paper at ICLR 2024

Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding network failures in data
centers: Measurement, analysis, and implications. SIGCOMM Comput. Commun. Rev., 41(4):
350–361, aug 2011. ISSN 0146-4833. doi: 10.1145/2043164.2018477. URL https://doi.
org/10.1145/2043164.2018477.

Gilad Baruch, Moran Baruch, and Yoav Goldberg. A little is enough: Circumventing defenses for
distributed learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/
2019/file/ec1c59141046cd1866bbbcdfb6ae31d4-Paper.pdf.

Guosai Wang, Lifei Zhang, and Wei Xu. What can we learn from four years of data center hardware
failures? In 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 25–36, 2017. doi: 10.1109/DSN.2017.26.

Devesh Tiwari, Saurabh Gupta, James Rogers, Don Maxwell, Paolo Rech, Sudharshan Vazhkudai,
Daniel Oliveira, Dave Londo, Nathan DeBardeleben, Philippe Navaux, Luigi Carro, and Arthur
Bland. Understanding gpu errors on large-scale hpc systems and the implications for system
design and operation. In 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), pages 331–342, 2015. doi: 10.1109/HPCA.2015.7056044.

Bin Nie, Devesh Tiwari, Saurabh Gupta, Evgenia Smirni, and James H. Rogers. A large-scale study
of soft-errors on gpus in the field. In 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 519–530, 2016. doi: 10.1109/HPCA.2016.7446091.

Sheldon M Ross. Introduction to probability models. Academic press, 2014.

Fanny Yang, Zuowen Wang, and Christina Heinze-Deml. Invariance-inducing regularization
using worst-case transformations suffices to boost accuracy and spatial robustness. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019b. URL https://proceedings.neurips.cc/paper/2019/file/
1d01bd2e16f57892f0954902899f0692-Paper.pdf.

Christina Heinze-Deml and Nicolai Meinshausen. Conditional variance penalties and domain shift
robustness, 2017. URL https://arxiv.org/abs/1710.11469.

Saeid Motiian, Marco Piccirilli, Donald A. Adjeroh, and Gianfranco Doretto. Unified deep supervised
domain adaptation and generalization. In IEEE International Conference on Computer Vision
(ICCV), 2017.

Sravanti Addepalli, Samyak Jain, et al. Efficient and effective augmentation strategy for adversarial
training. Advances in Neural Information Processing Systems, 35:1488–1501, 2022.

Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training.
arXiv preprint arXiv:2001.03994, 2020.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In international conference on machine learning, pages 1310–1320. PMLR, 2019.

Youssef Allouah, Rachid Guerraoui, Nirupam Gupta, Rafael Pinot, and John Stephan. Distributed
learning with curious and adversarial machines. arXiv preprint arXiv:2302.04787, 2023a.

Youssef Allouah, Sadegh Farhadkhani, Rachid Guerraoui, Nirupam Gupta, Rafaël Pinot, and John
Stephan. Fixing by mixing: A recipe for optimal byzantine ml under heterogeneity. In International
Conference on Artificial Intelligence and Statistics, pages 1232–1300. PMLR, 2023b.

P-A Absil. Optimization algorithms on matrix manifolds. Princeton University Press, 2008.

John Wright, Arvind Ganesh, Shankar Rao, Yigang Peng, and Yi Ma. Robust principal component
analysis: Exact recovery of corrupted low-rank matrices via convex optimization. Advances in
neural information processing systems, 22, 2009.

11

https://doi.org/10.1145/2043164.2018477
https://doi.org/10.1145/2043164.2018477
https://proceedings.neurips.cc/paper/2019/file/ec1c59141046cd1866bbbcdfb6ae31d4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/ec1c59141046cd1866bbbcdfb6ae31d4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/1d01bd2e16f57892f0954902899f0692-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/1d01bd2e16f57892f0954902899f0692-Paper.pdf
https://arxiv.org/abs/1710.11469

Published as a conference paper at ICLR 2024

Matthias Hein and Thomas Bühler. An inverse power method for nonlinear eigenproblems with
applications in 1-spectral clustering and sparse pca. Advances in neural information processing
systems, 23, 2010.

Rudrasis Chakraborty, Soren Hauberg, and Baba C Vemuri. Intrinsic grassmann averages for online
linear and robust subspace learning. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6196–6204, 2017.

D. Monk. The geometry of flag manifolds. Proceedings of the London Mathematical Society, s3-9(2):
253–286, 1959. doi: https://doi.org/10.1112/plms/s3-9.2.253. URL https://londmathsoc.
onlinelibrary.wiley.com/doi/abs/10.1112/plms/s3-9.2.253.

Ke Ye, Ken Sze-Wai Wong, and Lek-Heng Lim. Optimization on flag manifolds. Mathematical
Programming, 194(1-2):621–660, 2022.

Nathan Mankovich, Emily J King, Chris Peterson, and Michael Kirby. The flag median and flagirls.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
10339–10347, 2022.

Kevin P Murphy. Probabilistic machine learning: an introduction. MIT press, 2022.

Massimo Fornasier, Holger Rauhut, and Rachel Ward. Low-rank matrix recovery via iteratively
reweighted least squares minimization. SIAM Journal on Optimization, 21(4):1614–1640, 2011.

Toni Karvonen and Chris J Oates. Maximum likelihood estimation in gaussian process regression is
ill-posed. Journal of Machine Learning Research, 24(120):1–47, 2023.

Georgios Damaskinos, El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis, and Sébastien
Rouault. Aggregathor: Byzantine machine learning via robust gradient aggregation. Proceedings
of Machine Learning and Systems, 1:81–106, 2019.

Yuxin Chen, Yuejie Chi, Jianqing Fan, Cong Ma, and Yuling Yan. Noisy matrix completion:
Understanding statistical guarantees for convex relaxation via nonconvex optimization. SIAM
journal on optimization, 30(4):3098–3121, 2020a.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. In Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 5650–5659.
PMLR, 10–15 Jul 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, volume 32, 2019.

Rachid Guerraoui, Arsany Guirguis, Jérémy Plassmann, Anton Ragot, and Sébastien Rouault.
Garfield: System support for byzantine machine learning (regular paper). In 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pages 39–51,
2021. doi: 10.1109/DSN48987.2021.00021.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized byzantine-tolerant sgd, 2018a.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Phocas: dimensional byzantine-resilient
stochastic gradient descent, 2018b.

El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The hidden vulnerability of
distributed learning in Byzantium. In Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 3521–3530.
PMLR, 10–15 Jul 2018.

Nirupam Gupta, Shuo Liu, and Nitin H. Vaidya. Byzantine fault-tolerant distributed machine learning
using stochastic gradient descent (sgd) and norm-based comparative gradient elimination (cge),
2021.

12

https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s3-9.2.253
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s3-9.2.253

Published as a conference paper at ICLR 2024

Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. Project adam:
Building an efficient and scalable deep learning training system. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation, OSDI’14, page 571–582,
USA, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016. doi: 10.1109/CVPR.2016.90.

Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009. URL https:
//www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database, 2010. URL http://yann.
lecun.com/exdb/mnist/.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge, 2015.

Zeyuan Allen-Zhu, Faeze Ebrahimianghazani, Jerry Li, and Dan Alistarh. Byzantine-resilient
non-convex stochastic gradient descent. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.
URL https://openreview.net/forum?id=PbEHqvFtcS.

Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Fall of empires: Breaking byzantine-tolerant
sgd by inner product manipulation. In Ryan P. Adams and Vibhav Gogate, editors, Proceedings of
The 35th Uncertainty in Artificial Intelligence Conference, volume 115 of Proceedings of Machine
Learning Research, pages 261–270. PMLR, 22–25 Jul 2020. URL https://proceedings.
mlr.press/v115/xie20a.html.

David Kelly. Rough path recursions and diffusion approximations. The Annals of Applied Probability,
26(1):425–461, 2016.

Jianghong Bao and Qigui Yang. Period of the discrete arnold cat map and general cat map. Nonlinear
Dynamics, 70(2):1365–1375, 2012.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=H1oyRlYgg.

Yang You, Jonathan Hseu, Chris Ying, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large-batch
training for lstm and beyond. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’19, 2019.

Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R. Ganger, Phillip B.
Gibbons, and Onur Mutlu. Gaia: Geo-distributed machine learning approaching lan speeds. In
Proceedings of the 14th USENIX Conference on Networked Systems Design and Implementation,
page 629–647, 2017.

Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd with
majority vote is communication efficient and fault tolerant. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

Shashank Rajput, Hongyi Wang, Zachary Charles, and Dimitris Papailiopoulos. Detox: A
redundancy-based framework for faster and more robust gradient aggregation. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32, 2019.

Lingjiao Chen, Hongyi Wang, Zachary Charles, and Dimitris Papailiopoulos. DRACO:
Byzantine-resilient distributed training via redundant gradients. In Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 903–912. PMLR, 10–15 Jul 2018.

13

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://openreview.net/forum?id=PbEHqvFtcS
https://proceedings.mlr.press/v115/xie20a.html
https://proceedings.mlr.press/v115/xie20a.html
https://openreview.net/forum?id=H1oyRlYgg
https://openreview.net/forum?id=H1oyRlYgg

Published as a conference paper at ICLR 2024

Christian Kümmerle, Claudio Mayrink Verdun, and Dominik Stöger. Iteratively reweighted least
squares for basis pursuit with global linear convergence rate. Advances in Neural Information
Processing Systems, 34:2873–2886, 2021.

Deeksha Adil, Richard Peng, and Sushant Sachdeva. Fast, provably convergent irls algorithm for
p-norm linear regression. Advances in Neural Information Processing Systems, 32, 2019.

Chris M. Bishop. Training with noise is equivalent to tikhonov regularization. Neural Computation,
7(1):108–116, 1995. doi: 10.1162/neco.1995.7.1.108.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data
augmentation. Proceedings of the AAAI Conference on Artificial Intelligence, 34:13001–13008,
Apr. 2020. doi: 10.1609/aaai.v34i07.7000. URL https://ojs.aaai.org/index.php/
AAAI/article/view/7000.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in
vqa matter: Elevating the role of image understanding in visual question answering. International
Journal of Computer Vision, 127:398–414, 2017.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. Uniter: Universal image-text representation learning. In ECCV, 2020b.

Yu Huang, Chenzhuang Du, Zihui Xue, Xuanyao Chen, Hang Zhao, and Longbo Huang. What makes
multimodal learning better than single (provably). In NeurIPS, 2021.

Miguel Sousa Lobo, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret. Applications of
second-order cone programming. Linear algebra and its applications, 284(1-3):193–228, 1998.

Srinadh Bhojanapalli, Nicolas Boumal, Prateek Jain, and Praneeth Netrapalli. Smoothed analysis for
low-rank solutions to semidefinite programs in quadratic penalty form. In Conference On Learning
Theory, pages 3243–3270. PMLR, 2018.

Chungen Shen, Yunlong Wang, Wenjuan Xue, and Lei-Hong Zhang. An accelerated active-set
algorithm for a quadratic semidefinite program with general constraints. Computational
Optimization and Applications, 78(1):1–42, 2021.

Ariel Kleiner, Ali Rahimi, and Michael Jordan. Random conic pursuit for semidefinite programming.
Advances in Neural Information Processing Systems, 23, 2010.

Hans D Mittelmann. An independent benchmarking of sdp and socp solvers. Mathematical
Programming, 95(2):407–430, 2003.

Robert J Vanderbei and Hande Yurttan. Using loqo to solve second-order cone programming problems.
Constraints, 1(2), 1998.

Hezhi Luo, Xiaodi Bai, Gino Lim, and Jiming Peng. New global algorithms for quadratic
programming with a few negative eigenvalues based on alternative direction method and convex
relaxation. Mathematical Programming Computation, 11(1):119–171, 2019.

A Shapiro and JD Botha. Dual algorithm for orthogonal procrustes rotations. SIAM journal on matrix
analysis and applications, 9(3):378–383, 1988.

Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):
1115–1145, 1995.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting system for
convex optimization problems. Journal of Control and Decision, 5(1):42–60, 2018.

14

https://ojs.aaai.org/index.php/AAAI/article/view/7000
https://ojs.aaai.org/index.php/AAAI/article/view/7000

Published as a conference paper at ICLR 2024

Prateek Jain, Purushottam Kar, et al. Non-convex optimization for machine learning. Foundations
and Trends® in Machine Learning, 10(3-4):142–363, 2017.

Liqun Qi. Some simple estimates for singular values of a matrix. Linear algebra and its applications,
56:105–119, 1984.

Olga Klopp, Karim Lounici, and Alexandre B. Tsybakov. Robust matrix completion, 2016.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis, Changhoon Kim, Arvind
Krishnamurthy, Masoud Moshref, Dan Ports, and Peter Richtárik. Scaling distributed machine
learning with {In-Network} aggregation. In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21), pages 785–808, 2021.

ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya Akella, and Michael
Swift. {ATP}: In-network aggregation for multi-tenant learning. In 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 21), pages 741–761, 2021.

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin Izzard, Fernando
Mujica, and Mark Horowitz. Forwarding metamorphosis: Fast programmable match-action
processing in hardware for sdn. In Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, SIGCOMM ’13, page 99–110, New York, NY, USA, 2013. Association for Computing
Machinery. ISBN 9781450320566. doi: 10.1145/2486001.2486011. URL https://doi.org/
10.1145/2486001.2486011.

N McKeown. Pisa: Protocol independent switch architecture. In P4 Workshop, 2015.

Yifan Yuan, Omar Alama, Jiawei Fei, Jacob Nelson, Dan RK Ports, Amedeo Sapio, Marco Canini,
and Nam Sung Kim. Unlocking the power of inline {Floating-Point} operations on programmable
switches. In 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI
22), pages 683–700, 2022.

Zhourui Song, Zhenyu Liu, and Dongsheng Wang. Computation error analysis of block floating
point arithmetic oriented convolution neural network accelerator design. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications
of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in
Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018. ISBN 978-1-57735-800-8.

15

https://doi.org/10.1145/2486001.2486011
https://doi.org/10.1145/2486001.2486011

Published as a conference paper at ICLR 2024

A BACKGROUND AND RELATED WORK

Researchers have approached the Byzantine resilience problem from two main directions. In the
first class of works, techniques such as geometric median and majority voting try to perform robust
aggregation Damaskinos et al. (2019), Bernstein et al. (2019), Blanchard et al. (2017). The other
class of works uses redundancy and assigns each worker redundant gradient computation tasks Rajput
et al. (2019), Chen et al. (2018).

From another aspect, robustness can be provided on two levels. In weak Byzantine resilience methods
such as Coordinate-wise median Yin et al. (2018) and Krum Blanchard et al. (2017), the learning
is guaranteed to converge. In strong Byzantine resilience, the learning converges to a state as the
system would converge in case no Byzantine worker existed. Draco Chen et al. (2018) and Bulyan
El Mhamdi et al. (2018) are examples of this class. Convergence analysis of iterated reweighing type
algorithms has been done for specific problem classes. For example, Kümmerle et al. (2021); Adil
et al. (2019) show that when IRLS is applied for sparse regression tasks, the iterates can converge
linearly. Convergence analysis of matrix factorization problems using IRLS-type schemes has been
proposed before, see Fornasier et al. (2011); Chen et al. (2020a).

It is well known that data augmentation techniques help in improving the generalization capabilities
of models by adding more identically distributed samples to the data pool. Yang et al. (2019b);
Heinze-Deml and Meinshausen (2017); Motiian et al. (2017). The techniques have evolved along
with the development of the models, progressing from the basic ones like rotation, translation,
cropping, flipping, injecting Gaussian noise Bishop (1995) etc., to now the sophisticated ones
(random erasing/masking Zhong et al. (2020), cutout DeVries and Taylor (2017) etc.). Multi-modal
learning setups Goyal et al. (2017); Chen et al. (2020b); Huang et al. (2021), use different ways to
combine data of different modalities (text, images, audio etc.) to train deep learning networks.

B TRACTABILITY OF COMPUTING FLAG AGGREGATORS

In this section, we characterize the computational complexity of solving the Flag Aggregation problem
via IRLS type schemes using results from convex optimization. First, we present a tight convex
relaxation of the Flag Median problem by considering it as an instantiation of rank constrained
optimization problem. We then show that we can represent our convex relaxation as a Second Order
Cone Program which can be solved using off-the-shelf solvers Lobo et al. (1998). Second, we argue
that approximately solving such rank constrained problems in the factored space is an effective
strategy using new results from Bhojanapalli et al. (2018) which builds on asymptotic convergence in
Fornasier et al. (2011). Our results highlight that the Flag Median problem can be approximately
solved using smooth optimization techniques, thus explaining the practical success of an IRLS type
iterative solver.

Interpreting Flag Aggregator (equation 5 in the main paper) in the Case m = 1. We first present
a convex reformulation of the Flag Aggregator problem (5) in the case when the number of subspaces
(or columns) is equal to 1. To make the exposition easier, we will also assume that λ = 0. With
these assumptions, and using the fact that ∥y∥2 = 1, each term in the objective function of our FA
aggregator in (5) can be rewritten as,√

(1− (yT g̃i))2) =
√
yT
(
I − g̃ig̃i

T
)
y = ∥B̃iy∥2, (6)

where we use the notation g̃i = gi/∥gi∥ to denote the normalized worker gradients, I ∈ Rn×n is
the n × n identity matrix, and B̃i is the square root of the matrix I − g̃ig̃i

T . Observe that we can
rewrite all the terms in equation (5) in the main paper in a similar fashion as in (6). Furthermore, by
relaxing the feasible set to the n−Ball given by {y ∈ Rn : ∥y∥2 ≤ 1}, we obtain a Second Order
Cone Programming (SOCP) relaxation of our FA problem in (5). SOCP problems can be solved
using off-the-shelf packages with open source optimization solvers for gradient aggregation purposes
in small scale settings, that is, when the number of parameters n ≈ 104 Shen et al. (2021); Kleiner
et al. (2010); Mittelmann (2003). Our convex reformulation immediately yields insights on why
reweighing type algorithm that was proposed in Mankovich et al. (2022) works well in practice –
for example see Section 3 in Vanderbei and Yurttan (1998) in which various smoothing functions
similar to the Flag Median (square) based smoothing are listed as options. More generally, our SOCP

16

Published as a conference paper at ICLR 2024

relaxation shows that if the smoothed version can be solved in closed form (or efficiently), then a
reweighing based algorithm can be safely considered a viable candidate for aggregation purposes.

Tractable Reformulations when m > 1 for Aggregation Purposes. Note that for any feasible Y
such that Y TY = I , we have that the tr(Y) = m.
Remark B.1 (Parametrizing Subspaces using Y .). This assumption is without loss of generality. To
see this, first note that in general, a (nondegenerate) subspace S of a vector space V is defined as
a subset of V that is closed under linear combinations. Fortunately, in finite dimensions, we can
represent S as a rectangular matrix M by Fundamental theorem of linear algebra. So, we simply use
Y to represent the basis of this matrix M that represents the subspace S in our FA formulation.

Using this, we can rewrite each term in the objective function of our FA aggregator in equation (5) in
the main paper as, √

tr
(
Y T

(
I

m
− gigTi
∥gi∥22

)
Y

)
=
√

tr (Y TMiY), (7)

where Mi = MT
i , i = 1, ..., p is symmetric matrix with at most one negative eigenvalue.

Optimization problems involving quadratic functions with negative eigenvalues can be solved
globally, in some cases Luo et al. (2019); Shapiro and Botha (1988). We consider methods that can
efficiently (say in polynomial running time in n) provide solutions that are locally optimal. In order
to do so, we consider the Semi Definite programming relaxation obtained by introducing matrix
Z ⪰ 0 ∈ Rnm×nm to represent the term Y Y T , constrained to be rank one, and such that tr(Z) = m.

By using vec(Y) ∈ Rnm to denote the vector obtained by stacking columns of Z, when m > 1, we
obtain a trace norm constrained SOCP. Importantly, objective function can be written as a sum of
terms of the form, √

vec(Y)T (I ⊗Mi) vec(Y) =
√

tr (ZT (I ⊗Mi)), (8)

where ⊗ denotes the usual tensor (or Kronecker) product between matrices.

Properties of lifted formulation in (8). There are some advantages to the loss function as specified
in our reformulation (8). First, note that then our relaxation coincides with the usual trace norm based
Goemans-Williamson relaxation used for solving Max-Cut problem with approximation guarantees
Goemans and Williamson (1995). Albeit, our objective function is not linear, and to our knowledge,
it is not trivial to extend the results to nonlinear cases such as ours in (8). Moreover, even when
Mi ⪰ 0, the

√
· makes the relaxation nonconvex, so it is not possible to use off-the-shelf disciplined

convex programming software packages such as CVXPy Diamond and Boyd (2016); Agrawal et al.
(2018). Our key observation is that away from 0,

√
· is a differentiable function. Hence, the objective

function in (8) is differentiable with respect to Z.
Remark B.2 (Using SDP relaxation for Aggregation.). In essence, if the optimal solution Z∗ to
the SDP relaxation is a rank one matrix, then by rank factorization theorem, Z∗ can be written as
Z∗ = vec(Y ∗)vec(Y ∗)T where vec(Y ∗) ∈ Rmn×1. So, after reshaping, we can obtain our optimal
subspace estimate Y ∗ ∈ Rm×n for aggregation purposes. In the case the optimal Z∗ is not low rank,
we simply use the largest rank one component of Z∗, and reshape it to get Y ∗.

C THE NECESSITY OF ORTHOGONALITY CONSTRAINT FOR EFFICIENCY

This necessity is a folklore result that can be found in various places, but we provide a formal proof
here for completeness. Given the gradient matrix G and subspace Y , projection of G onto Y is
given by P = Y TG. The entry Pji has the amount (measured using dot product) of gi along yj . So,
Y P gives us the reconstruction of G using each column of Y . By reconstruction we mean that the
matrix Y Y TG is the best (or optimal) m−rank reconstruction of G – here optimality is with respect
to Squared ℓ2 norm which is also known as Mean Reconstruction Error (MSE). In detail, we are
given with gradient matrix G, and yj , j = 1, ...,m such that yj’s are orthonormal, that is, yTj yj′ = 1

if j = j′, and 0 otherwise. Since each column of G is multiplied by the Projection matrix Y Y T

separately, we consider each gi individually.

17

Published as a conference paper at ICLR 2024

(i) Case 1: m = 1, so we are given with just one y such that ∥y∥2 = 1. Then projecting gi onto y in
MSE is the solution to a 1-d optimization problem:

argmin
p∈R

[
MSE(p) := ∥gi − py∥22 = ∥gi∥2 − 2pgTi y + p2 ∥y∥22

]
=

gTi y

∥y∥22
= gTi y, (9)

where we used the fact that ∥y∥2 = 1 in the last line. So the reconstruction is given by scaling y by
the optimal p = gTi y. It turns out that this calculation can be performed with each basis as we show
in the next case.

(ii) Case 2: m > 1, so we are given m pairwise orthonormal vectors and similar to previous case
we have to determine the m projection coefficients for each gi. Given gi, we determine p ∈ Rm as
follows:

arg min
p1,··· ,pm

MSE(p1, · · · ,pm) :=

∥∥∥∥∥∥gi −
m∑
j=1

pjyj

∥∥∥∥∥∥
2

2

= ∥gi∥22 − 2

m∑
j=1

pjg
T
i yj +

m∑
j=1

p2
j ∥yj∥

2
2

(10)

where we used orthogonality relationship in the last equality. By setting ∇pj
(MSE) = 0 we

see that the reconstruction problem decomposes to m 1-d optimization problems each with closed
form solutions pj =

gT
i yj

∥yj∥2 = gTi yj , j = 1, . . . ,m as in the previous case. So in this case, the

reconstruction is given by
∑

j pjyj =
∑

j yjy
T
j gi = Y Y T gi

This illustrates why we require orthogonality constraints since otherwise, reconstruction might be
computationally expensive. Note that Y TY = I does not imply Y Y T = I since m < n. In literature,
the matrix Y Y T is often called as the family of Projection matrices (not the Y TG as we do here)
since (Y Y T)2 = Y Y TY Y T = Y IY T = Y Y T for any orthonormal Y .

D SOLVING FLAG AGGREGATION EFFICIENTLY

Convergence Analysis when m = 1. Note that for the case m = 1, that is, FA provides unit vector
y ∈ Rn to get aggregated gradient as yyTG, we can use smoothness based convergence results in
nonconvex optimization, for example, please see Jain et al. (2017). We believe this addresses most of
the standard training pipelines used in practice. Now, we focus on the case with m > 1.

Now that we have a smooth reformulation of the aggregation problem that we would like to solve,
it is tempting to solve it using first order methods. However, naively applying first order methods
can lead to slow convergence, especially since the number of decision variables is now increased
to m2n2. Standard projection oracles for trace norm require us to compute the full Singular Value
Decomposition (SVD) of Z which becomes computationally expensive even for small values of
m,n ≈ 10.

Fortunately, recent results show that the factored form smooth SDPs can be solved in polynomial
time using gradient based methods. That is, by setting Z = vec(Y)vec(Y)T , and minimizing the loss
functions Li(Y) =

√
vec(Y)T (I ⊗Mi) vec(Y) with respect to Y , we have that the set of locally

optimal points coincide, see Bhojanapalli et al. (2018). Moreover, we have the following convergence
result for first order methods like Gradient Descent that require SVD of n× p matrices:
Lemma D.1. If Li are κi−smooth, with a ηi−lipschitz Hessian, then projected gradient descent
with constant step size converges to a locally optimal solution to (8) in Õ(κ/ϵ2) iterations where
0 ≤ ϵ ≤ κ2/η is a error tolerance parameter, κ = maxi κi, and η = maxi ηi.

Above lemma D.1 says that gradient descent will output an aggregation Y that satisfies second order
sufficiency conditions with respect to smooth reformulated loss function in (8). All the terms inside
Õ in lemma D.1 are logarithmic in dimensions m,n, lipschitz constant L, and accuracy parameter ϵ.
Remark D.2 (Numerical Considerations.). Note that the lipschitz constant κ of the overall objective
function depends on Mi. That is, when Mi has negative eigenvalues, then κ can be high due to the
square root function. We can consider three related ways to avoid this issue. First, we can choose a
value m′ > m in our trace constraint such that Mi ⪰ 0. Similarly, we can expand (8) (in

√
·) as outer

18

Published as a conference paper at ICLR 2024

product of columns of Y suggesting that g̃g̃T term need to be normalized by m, thus making Mi ⪰ 0.
Secondly, we can consider adding a quadratic term such as ∥Y ∥2Fro to make the function quadratic.
This has the effect of decreasing κ and η of the objective function for optimization. Finally, we can
use mi = max(ki,m) instead of min in defining the loss function as in Mankovich et al. (2022)
which would also make Mi ⪰ 0.

E PROOF OF LEMMA D.1 WHEN m > 1.

We provide the missing details in Section D when m > 1. To that end, we will assume that each
worker i provides the server with a list of ki gradients, that is, gi ∈ Rn×k – a strict generalization
of the case considered in the main paper (with k = 1), that may be useful independently. Note that
in Mankovich et al. (2022), these gi’s are assumed to be subspaces whereas we do not make that
assumption in our FA algorithm.

Now, we will show that the RHS in equation (7) and LHS in equation (8) are equivalent. For that, we
need to recall an elementary linear algebra fact relating tensor/Kronecker product, and tr operator.
Recall the definition of Kronecker product:
Definition E.1. Let A ∈ Rd1×d2 , B ∈ Re1×e2 , then A⊗B ∈ Rd1e1×d2e2 is given by,

A⊗B :=

 a1,1B . . . a1,d2
B

...
. . .

...
ad1,1B . . . ad1,d2

B

 , (11)

where ai,j denotes the entry at the i−th row, j−th column of A.
Lemma E.2 (Equivalence of Objective Functions.). Let Y ∈ Rn×m, g ∈ Rn×k (so, M ∈ Rn×n).
Then, we have that,

tr
(
Y T ggTY

)
:= tr

(
Y TMY

)
= vec(Y)T (I ⊗M) vec(Y), (12)

where I ∈ Rm×m is the identity matrix.

Proof. Using the definition of tensor product in equation (11), we can simplify the right hand side of
equation (12) as,

vec(Y)T (I ⊗M) vec(Y) = [y11, · · · yn1, · · · , y1m, · · · , ynm]

M 0 . . . 0
... M . . .

...
...

...
. . .

...
0 · · · · · · M

y11
...

yn1
...

y1m
...

ymn

=

m∑
j=1

yTj Myj

=

m∑
j=1

tr
(
yjy

T
j M

)
= tr

 m∑
j=1

yjy
T
j M

 = tr

 m∑
j=1

yjy
T
j

M

(13)

= tr
(
Y Y TM

)
= tr

(
Y TMY

)
, (14)

where we used the cyclic property of trace operator tr(·) in equations (13), and (14) that is, tr(ABC) =
tr(CAB) = tr(BCA) for any dimension compatible matrices A,B,C.

E.1 PROOF OF LEMMA D.1

Recall that, given M̃i = I ⊗Mi, the lifted cone programming relaxation of FA can be written as,

min
Z

∑
i

√
tr(ZT M̃i) s.t. Z ⪰ 0, tr(Z) = m,Z = ZT , (15)

19

Published as a conference paper at ICLR 2024

where m is the rank of Z or number of columns of Y . We now use the above Lemma E.2 to show
that the objective function with respect to Z in the lifted formulation is smooth which gives us the
desired convergence result in Lemma D.1.

Proof. let κ̃i > 0,

∂
√

tr(ZT M̃i) + κ̃i

∂Z
=

1

2
√

κ̃i + tr(ZT M̃i)
M̃i, (16)

where M̃i = I⊗Mi as in equation (8). Now, since M̃i is constant with respect to Z, the gradient term

is affected only through a scalar
√

tr(ZT M̃i) + κ̃i. So the largest magnitude or entrywise ℓ∞-norm
of the Hessian is given by,∣∣∣∣∣∣

∂ 1√
tr(ZT M̃i)+κ̃i

∥M̃i∥∞

∂Z

∣∣∣∣∣∣ = ∥M̃i∥∞

2

√(
tr(ZT M̃i) + κ̃i

)3 . (17)

Now, we will argue that the gradient and hessian are lipschitz continuous in the lifted space. Since any
feasible Z ⪰ 0 is positive semidefinite, if M̃i ⪰ 0, then the scalar tr(ZT M̃i) is at least m ·λM̃i

mn where
λM̃i
mn is the smallest (or mn−th) eigenvalue of M̃i. So, we can choose κ̃i = 0∀i. If not, then there is

a negative eigenvalue, possibly repeated. So, the gradient might not exist. In cases where M̃i has
negative eigenvalues, we can choose κ̃i = κ̃ =

∣∣∣mini min
(
λM̃i
mn, 0

)∣∣∣. With these choices, we have
that the gradient of the objective function in (8) is lipschitz continuous. By a similar analysis using
the third derivative, we can show that Hessian is also lipschitz continuous with respect to Z. In other
words, all the lipschitz constant of both the gradient and hessian of our overall objective function is
controlled by κ̃ > 0. Hence, we have all conditions satisfied required for Lemma 1 in Bhojanapalli
et al. (2018), and we have our convergence result for FA in the factored space of vec(Y).

Few remarks are in order with respect to our convergence result. First, is the choice κ̃ important
for convergence? Our convergence result shows that a perturbed objective function tr(ZT M̃i) + κ̃
has the same second order stationary points as that of the objective function in the factored form
formulated using Y (or vec(Y)). We can avoid this perturbation argument if we explicitly add
constraints tr(ZT M̃i) ≥ 0, since projections on linear constraints can be performed efficiently
exactly (sometimes) or approximately. Note that these constraints are natural since it is not possible
to evaluate the square root of a negative number. Alternatively, we can use a smooth approximate

approximation of the absolute values
√∣∣∣tr(ZT M̃i)

∣∣∣. In this case, it is easy to see from (16), and

(17) that the constants governing the lipschitz continuity as dependent on the absolute values of the
minimum eigenvalues, as expected. In essence, no, the choice of κ̃ does not affect the nature of
landscape – approximate locally optimal points remain approximately locally optimal. In practice,
we expect the choice of κ̃ to affect the performance of first order methods.

Second, can we assume M̃i ≻ 0 for gradient aggregation purposes? Yes, this is because, when
using first order methods to obtain locally optimal solution, the scale or norm of the gradient becomes
a secondary factor in terms of convergence. So, we can safely normalize each Mi by the nuclear
norm ∥Mi∥∗ :=

∑ki

j=1 σj where σj is the j−th singular value of Mi. This ensures that I −Mi ⪰ 0,
assistant convergence. While ∥Mi∥∗ itself might be computationally expensive to compute, we
may be able to use estimates of ∥Mi∥∗ via simple procedures as in Qi (1984). In most practical
implementations including ours, we simply compute the average of the gradients computed by each
worker before sending it to the parameter server, that is, ki ≡ k = 1 in which case simply normalizing
by the euclidean norm is sufficient for our convergence result to hold. Our FA based distributed
training Algorithm 1 solves the factored form for gradient aggregation purposes (in Step 6) at the
parameter server.

Finally, please note that our technical assumptions are standard in optimization literature, that exploits
smoothness of the objective function – since the feasible set of Y in (1) is bounded, assumptions

20

Published as a conference paper at ICLR 2024

are satisfied. Our proof techniques are standard, and we simply use them on our reformulation to
obtain convergence guarantee second order stationary points for IRLS iterations since there exists a
tractable SDP relaxation.

E.2 FA OPTIMALITY CONDITIONS AND SIMILARITIES WITH BULYAN EL MHAMDI ET AL.
(2018) BASELINE.

We first restate our Flag Aggregator with gi ∈ Rn×k in optimization terms as follows,

min
Y :Y TY=I

A(Y) :=

p∑
i=1

√√√√(1− tr
(
Y T gigTi Y

)
tr
(
gTi gi

))
+ λR(Y), (18)

and write its associated Lagrangian L defined by,

L(Y,Γ) :=
p∑

i=1

√√√√(1− tr
(
Y T gigTi Y

)
tr
(
gTi gi

))
+ λR(Y) + tr

(
ΓT
(
Y TY − I

))
, (19)

where Γ ∈ Rm×m denotes the Lagrange multipliers associated with the orthogonality constraints in
equation (18). In particular, since the constraints we have are equality, there are no sign restrictions
on Γ, so they are often referred to as “free”. Moreover, since Y is a real matrix, the constraints are
symmetric (i.e., yTi yj = yTj yi), we may assume that Γ = ΓT , without loss of generality.

We will introduce some notations to make calculations easier. We will use g̃i ∈ Rn×k to denote the
normalized gradients matrix of the data terms in equation (18). That is, we define

g̃i := −
1

tr
(
gTi gi

)
·

√(
1− tr(Y T gigT

i Y)
tr(gT

i gi)

)gig
T
i =: digig

T
i . (20)

With this notation, we are ready to use the first optimality conditions associated with the constrained
optimization problem in (18) with its Lagrangian in (19) By first order optimality or KKT conditions,
we have that,

0 = ∇Y L(Y∗,Γ∗) =

(
p∑

i=1

g̃ig̃
T
i

)
Y∗ + λ∇R(Y∗) + 2Y∗Γ∗

= GD∗G
TY∗ + λ∇R(Y∗) + 2Y∗Γ∗, (Objective) (21)

0 = ∇ΓL(Y∗,Γ∗) = Y T
∗ Y∗ − I, (Feasibility)

where Y∗ ∈ Rn×m,Γ∗ ∈ Rm×m are the optimal primal parameters, lagrangian multipliers, and
D∗ ∈ Rp×p

<0 is the diagonal matrix with entries equal to −di < 0 as in equation (20). We may ignore
the Feasibility conditions since our algorithm returns an orthogonal matrix by design, and focus on
the Objective conditions. Aside, IRLS corresponds to solving this lagrangian equations in (21)
directly. When λ = 0, the solution to the lagrangian corresponds to computing the SVD of GD.
While using functions that can be approximated as quadratic tr functions as regularization,
∇R(Y) ≡ PI where P is a positive semidefinite matrix, and so we have to compute the cholesky
decomposition of GDGT + λPI first, and then a SVD as stated in Algorithm 1 in the main
paper.

Now, by bringing the term associated with Lagrangian to the other side, and then right multiplying by
Γ−1
∗ inverse of Γ∗, we have that Y∗ satisfies the following identity,

Y∗ = −1

2

(
GD∗G

TY∗ + λ∇R(Y∗)
)
Γ−1
∗ . (22)

21

Published as a conference paper at ICLR 2024

By using the identity (22), we can write an equivalent representation of our aggregation rule Y∗Y
T
∗ G

given by,

Y∗Y
T
∗ G =

1

4

(
GD∗G

TY∗ + λ∇R(Y∗)
)
Γ−1
∗ Γ−1

∗
(
Y T
∗ GD∗G

T + λ∇R(Y∗)
T
)
G︸ ︷︷ ︸

:=M∗∈Rm×p

∝
(
GD∗G

TY∗ + λ∇R(Y∗)
)
M∗

= G D∗G
TY∗︸ ︷︷ ︸

:=S′
∗∈Rp×m

M∗ + λ∇R(Y∗)M∗

= GS′
∗M∗ + λ∇R(Y∗)M∗

: = GSFA + λ∇R(Y∗)M∗, (23)

that is, the update rule of FA can be seen as a left multiplication with the square “flag selection” matrix
SSA = S′

∗M∗ ∈ Rp×p, and then perturbing with the gradient∇R(Y∗) of the regularization function
R with a different matrix M∗ as in equation (23). Importantly, we can see in equation (23) that the
(reduced) selection matrix S ∈ Rp×m

≥0 in Bulyan El Mhamdi et al. (2018) is equivalent to the total
selection matrix SSA ∈ Rp×p in our FA setup. Moreover, we can also see that domain knowledge in
terms of regularization function may also determine the optimal subspace, albeit additively only. We
leave the algorithmic implications of our result as future work.
Remark E.3 (Invertibility of Γ∗ in Equation (22).). Theoretically, note that Γ is symmetric, so by
Spectral Theorem, we know that its eigen decomposition exists. So, we may use pseudo-inverse
instead of its inverse. Computationally, given any primal solution Y∗ we can obtain Γ∗ by left
multiplying equation (21) by Y∗ and use feasibility i.e., Y T

∗ Y∗ = I . Now, we obtain Γ−1
∗ columnwise

by using some numerical solver such as conjugate gradient (with fixed iterations) on Γ with standard
basis vectors. In either case, our proof can be used with the preferred approximation choice of Γ−1

∗ to
get the equivalence as in equation (23).
Remark E.4 (Provable Robustness Guarantees for FA.). Since our FA scheme is based on convexity, it
is possible to show worst-case robustness guarantees for FA iterations under mild technical conditions
on Y ∗ – even under correlated noise, see for e.g. Assumption 1 in Klopp et al. (2016)). In fact, by
using the selection matrix SFA in equation (23) in Lemma 1 in Damaskinos et al. (2019) and following
the proof, we can get similar provable robustness guarantees for FA. We leave the theoretical analysis
as future work.

F ADDITIONAL EXPERIMENTS

F.1 THE EFFECT OF REGULARIZATION PARAMETER

Our algorithm depends on the regularization parameter λ. Figure 10 below illustrates the effect of this
parameter on similarity of aggregated gradient vectors for FA and Multi-Krum. For this experiment,
we sample the gradients output by the parameter server across multiple epochs for both FA and
Multi-Krum and compute the cosine similarity of corresponding vectors. We repeat the experiment
with different λ values. As we can see, for smaller iterations there is some similarity between the
gradients computed by FA and Multi-Krum. This similarity is more visible for smaller λ values.

Figure 10: The effect of the regularization parameter λ on similarity of FA performance to Multi-Krum

22

Published as a conference paper at ICLR 2024

F.2 EXPERIMENTS WITH OTHER BYZANTINE ATTACKS OR BASELINES

0 10 20 30 40
Epoch

10

20

30

40

50

60

To
p-

1
Ac

cu
ra

cy
 (%

)

Flag Aggregator
Mean

Figure 11: Convergence with
f = 0

In Figure 11, we present a convergence plot to study FA when
there are no Byzantine workers. Essentially, when f = 0, a robust
aggregator should perform just as well as the standard distributed
SGD with Mean as the aggregator. However, for f > 0, the Mean
aggregator is not robust, as demonstrated in Figure 2. Figure 11
illustrates that FA outperforms the mean, which aligns with the
findings of Mankovich et al. (2022).

So far we have presented results where Byzantine workers send
uniformly random gradient vectors, use synthetic data (nonlinear
data augmentation routines), or where a percentage of gradients are
dropped and zeroed out at the parameter server to show tolerance to
communication loss. Here we provide more results when Byzantine
workers send a gradient based on the Fall of Empires attack with ϵ = 0.1 Xie et al. (2020) in
Figure 12a and when they send 10x amplified sign-flipped gradients Allen-Zhu et al. (2021) in
Figure 12b. Because mathematically, one iteration of FA with uniform weights assigned across all
workers is equivalent to PCA, we also add a baseline for top-m principal components of the gradient
matrix in Figure 12c. The novelty in our FA approach is the extension of PCA to an iteratively
reweighted form that is guaranteed to converge. Specifically, we show that we obtain a convergent
procedure in which we repeatedly solve weighted PCA problems. Moreover, the convergence
guarantee immediately follows when the procedure is viewed as an IRLS procedure solving the MLE
problem induced by the value of workers modeled with a beta distribution as in Section 2.2.

Flag Aggregator
Bulyan

Multi-Krum
MeaMed

Median
Trimmed Mean

Phocas
PCA

0 5 10 15 20 25 30 35 40
Epoch

10

20

30

40

50

60

To
p-

1
Ac

cu
ra

cy
 (%

)

(a) Fall of Empires

0 5 10 15 20 25 30 35 40
Epoch

10

20

30

40

50

60

To
p-

1
Ac

cu
ra

cy
 (%

)

(b) Sign-flipping

0 5 10 15 20 25 30 35 40
Epoch

10

20

30

40

50

60

To
p-

1
Ac

cu
ra

cy
 (%

)

(c) PCA baseline

Figure 12: Robustness towards other attacks and comparison to PCA baseline, p = 15, f = 2.

Flag Aggregator
RESAM + Bulyan

RESAM + Multi-Krum
RESAM + MeaMed

RESAM + Median
RESAM + Trimmed Mean

RESAM + Phocas
RESAM + CGE

0 10 20 30 40
Epoch

10

20

30

40

50

60

To
p-

1
Ac

cu
ra

cy
 (%

)

(a) Fall of Empires, f = 1

0 10 20 30 40
Epoch

10

20

30

40

50

60

To
p-

1
Ac

cu
ra

cy
 (%

)

(b) Augmented CIFAR-10, f = 2

0 10 20 30 40
Epoch

10

20

30

40

50

To
p-

1
Ac

cu
ra

cy
 (%

)

(c) Sign-flipping, f = 3

Figure 13: Robustness comparison with RESAM and CGE, p = 15.

We compared FA to RESAM Farhadkhani et al. (2022) that adapts the concept of gradient momentum
to distributed architectures. RESAM involves each honest worker sending the momentums of their

23

Published as a conference paper at ICLR 2024

stochastic gradients to the server, instead of just the gradients. Similar to Allouah et al. (2023a;b),
RESAM still relies on resilient aggregation at the server, so we complement it with the existing
baselines including Comparative Gradient Elimination (CGE) Gupta et al. (2021). CGE sorts the
gradients based on their Euclidean norms and averages the gradients corresponding to the smallest
p− f norms. Figure 13 shows that FA outperforms all baselines under three different scenarios. In
addition, FA is designed as a robust standalone aggregator that needs no extra computation or space
for calculating gradient momentums and storing them on the worker side.

F.3 EXPERIMENTS WITH THE TINY IMAGENET DATASET

We repeated our experiments with Tiny ImageNet Le and Yang (2015) which contains 100000 images
of 200 classes (500 for each class) downsized to 64×64 colored images. We fix our batch size to 192
and use ResNet-50 He et al. (2016) throughout the experiments.

Tolerance to the number of Byzantine workers: In this experiment, we have p = 15 workers of
which f = 1, .., 3 are Byzantine and send random gradients. The accuracy of test data for FA in
comparison to other aggregators is shown in Figure 14. As we can see, for f = 1 and f = 2, FA
converges at a higher accuracy than all other schemes. For all cases, FA also converges in ∼2x less
number of iterations.

Flag Aggregator Bulyan Multi-Krum MeaMed Median Trimmed Mean Phocas

0 5 10 15 20 25
Epoch

0

10

20

30

40

To
p-

1
Ac

cu
ra

cy
 (%

)

(a) f = 1

0 5 10 15 20 25
Epoch

0
5

10
15
20
25
30
35
40

To
p-

1
Ac

cu
ra

cy
 (%

)

(b) f = 2

0 5 10 15 20 25
Epoch

0

5

10

15

20

25

30

35

To
p-

1
Ac

cu
ra

cy
 (%

)

(c) f = 3

Figure 14: Tolerance to the number of Byzantine workers for robust aggregators.

Tolerance to communication loss: We set a 10% loss rate for the links connecting f = 1, .., 3 of
the workers to the parameter server. Figure 15 shows that our takeaways in the main paper are also
confirmed in this setting with the new dataset.

Flag Aggregator Bulyan Multi-Krum MeaMed Median Trimmed Mean Phocas

0 5 10 15 20 25
Epoch

0

10

20

30

40

50

To
p-

1
Ac

cu
ra

cy
 (%

)

(a) f = 1

0 5 10 15 20 25
Epoch

0

10

20

30

40

50

To
p-

1
Ac

cu
ra

cy
 (%

)

(b) f = 2

0 5 10 15 20 25
Epoch

0

10

20

30

40

50

To
p-

1
Ac

cu
ra

cy
 (%

)

(c) f = 3

Figure 15: Tolerance to communication loss

The effect of having augmented data during training in Byzantine workers: As mentioned in the
main paper, we choose two non linear augmentation schemes, Lotka Volterra (shown in rows 1 and 3
of Figure 16) and Arnold’s Cat Map (shown in rows 2 and 4 of Figure 16). We used SciPy’s Virtanen
et al. (2020) solve_ivp method to solve the differential equations, by using the LSODA solver. In
addition to the setup described in the main paper, we also added a varying level of Gaussian noise to
each of the training images. All the images in the training set are randomly chosen to be augmented

24

Published as a conference paper at ICLR 2024

with varying noise levels of the above mentioned augmentation schemes. We have provided the code
that implements all our data augmentation schemes in the supplement zipped folder.

As seen from the figure, Arnold’s Cat Map augmentations stretch the images and rearrange them
within a unit square, thus resulting in streaky patterns. Whereas the Lotka Volterra augmentations
distort the images while keeping the images similar to the original ones. We perform experiments
with data augmented with varying shares using the two methods and show the results in Figure 17.
For CIFAR-10, we showed the results when all of the samples in Byzantine workers are augmented
in Figure 7 in the main paper. For Tiny ImageNet, this case is shown Figure 17a. Figures 17b and 17c
show the results under different ratios on CIFAR-10. By changing the ratios we were interested to
see if streaky patterns augmented by Arnold’s Cat Map would introduce a more adverse effect from
Byzantine workers compared to Lotka Volterra. Although the results do not show a significant signal,
we can see that the augmentations did impact the overall gradients and that FA performs significantly
better.

Figure 16: TinyImagenet data with Augmentation: Row 1: Lotka Volterra augmentation on Class
Horse. Row 2: Arnold’s Cat Map augmentation on Class Horse. Row 3:Lotka Volterra augmentation
on Class Ship. Row 4: Arnold’s Cat Map augmentation on Class Ship.

Flag Aggregator Bulyan Multi-Krum MeaMed Median Trimmed Mean Phocas

0 5 10 15 20 25
Epoch

0

10

20

30

40

50

To
p-

1
Ac

cu
ra

cy
 (%

)

(a) 100% Lotka-Volterra on Tiny
ImageNet

0 10 20 30
Epoch

10

20

30

40

50

60

To
p-

1
Ac

cu
ra

cy
 (%

)

(b) 50% Lotka-Volterra, 50%
Arnold’s Cat Map on CIFAR-10

0 10 20 30
Epoch

10

20

30

40

50

60

To
p-

1
Ac

cu
ra

cy
 (%

)

(c) 33% Lotka-Volterra, 66%
Arnold’s Cat Map on CIFAR-10

Figure 17: Accuracy of using augmented data in f = 3 workers

G DISCUSSION AND LIMITATION

Is it possible to fully “offload” FA computation to switches? Recent work propose that aggregation
be performed entirely on network infrastructure to alleviate any communication bottleneck that
may arise Sapio et al. (2021); Lao et al. (2021). However, to the best of our knowledge, switches
that are in use today only allow limited computation to be performed on gradient gi as packets
whenever they are transmitted Bosshart et al. (2013); McKeown (2015). That is, programmability is
restrictive at the moment— switches used in practice have no floating point, or loop support, and
are severely memory/state constrained. Fortunately, solutions seem near. For instance, Yuan et al.
(2022) have already introduced support for floating point arithmetic in programmable switches. We
may use quantization approaches for SVD calculation with some accuracy loss Song et al. (2018) to

25

Published as a conference paper at ICLR 2024

0 10 20 30 40
Epoch

0

500

1000

1500

2000

2500

3000

Ti
m

e
(s

)

Flag Aggregator
Bulyan
Multi-Krum
MeaMed
Median
Trimmed Mean
Phocas

(a) Iteration time

500 1000 1500 2000 2500
Time (s)

10

20

30

40

50

To
p-

1
Ac

cu
ra

cy
 (%

)

Flag Aggregator
Bulyan
Multi-Krum
MeaMed
Median
Trimmed Mean
Phocas

(b) Time-to-accuracy

Figure 18: Wall clock time comparison

approximate floating point arithmetic. Offloading FA to switches has great potential in improving
its computational complexity because the switch would perform as a high-throughput streaming
parameter server to synchronize gradients over the network. Considering that FA’s accuracy currently
outperforms its competition in several experiments, an offloaded FA can reach their accuracy even
faster or it could reach a higher accuracy in the same amount of time.

Potential Limitation: Since we perform SVD in every iteration of FA, the complexity of the
algorithm would be O(nNδ(

∑p
i=1 ki)

2) with Nδ being the number of iterations for the algorithm.
Figure 18 shows the wall clock time it takes for FA to reach a certain epoch (18a) or accuracy (18b)
compared to other methods under a fixed amount of random noise f = 3 with p = 15 workers on
CIFAR-10. Although the iteration complexity of FA is higher, each iteration has a higher utility as
reflected in the time-to-accuracy measures. This makes FA comparable to others in a shorter time
span, however, eventually FA converges to a better state as shown in Figure 18b. Regardless, it is
possible to take advantage of fast, randomized SVD solvers to lower the wall clock time. In detail, to
calculate the left singular values of GD1/2 ∈ Rn×p, we use the fact that number of workers p≪ n
and solve the p × p eigenvalue problem which can be fast in practice. Upon receiving the right
singular vectors, first order methods can be used to obtain the left singular vectors. In this sense, we
can use any fast, randomized SVD algorithm to solve for the right and/or left singular vectors.

Towards Federated Learning Environments: As we extend our gaze beyond the current
implementation, the potential of FA within federated learning environments emerges as an intriguing
frontier. Our scalability investigations, as illustrated in Figure 9, serve as a preliminary foundation
for this exploration. We show FA’s adaptability to more complex distributed settings, hinting at its
viability across expanded cluster configurations.

Envisioning the implementation of FA in a federated context, we propose a hierarchical architectural
model. This model involves gradient-computing workers transmitting their results to designated
aggregating workers within clusters, akin to a parameter server but on a localized scale. These
aggregating nodes then engage in further synthesis of results across multiple clusters, fostering a
scalable, federated framework. This architecture not only maintains FA’s core aggregation capabilities
but also adapts them to the nuanced demands of federated learning, marking a significant stride
toward broader applicability.

Charting the Path Forward: Our goal is to enhance the robustness and scalability of distributed
training systems. By exploring the expansion of FA to more clusters and investigating computational
offloading, we highlight our commitment to leading progress in the field. As we advance, our efforts
are aimed at not just refining FA but also devising innovative solutions to meet the broad spectrum of
challenges in distributed training.

26

	Introduction
	Robust Aggregators as Orthogonality Constrained Optimization
	Optimal Subspace Hypothesis for Distributed Descent
	Approximate Maximum Likelihood Estimation of Optimal Subspace
	Flag Aggregator for Distributed Optimization

	Experiments
	Setup
	Results

	Conclusion
	Acknowledgements
	Background and Related Work
	Tractability of Computing Flag Aggregators
	The necessity of orthogonality constraint for efficiency
	Solving Flag Aggregation Efficiently
	Proof of Lemma D.1 when m>1.
	Proof of Lemma D.1
	FA Optimality Conditions and Similarities with Bulyan 7 Baseline.

	ADDITIONAL EXPERIMENTS
	The Effect of Regularization Parameter
	Experiments with other Byzantine attacks or baselines
	Experiments with the Tiny ImageNet dataset

	Discussion and Limitation

